
Abstract
We used systematic layering of variously sized layers to quickly
create large, seemingly non-repeating textures. This leads to
significantly more control for artists to create large visual scenes
without the need for large teams to create massive textures. Our
method maintains the visual appeal of seamless and non-repeating
design, as well as uses little memory and fast rendering.

Introduction
Compelling video game textures are difficult to create. Small, tiled
textures are quick to produce and render, but the repeated
appearance can remove the player from their immersion
experience. As game worlds become larger and often more
realistic, the textures need to grow in resolution and fidelity to
compensate. Currently textures are created by methods of
generating filtered noise or by having an artist go through and
paint every pixel. Painting large textures is time consuming,
requires nontrivial compression, and novel texture management
systems. Methods for more automated texture generation include
filtering blue noise [Stam 1997], aperiodic tiling [Parzer 2013],
and texture compression (epitome) [Wang et al. 2008], but these
methods are difficult to generalize across a variety of categories of
texture structures.

We present a method of creating large-scale, seamless, and
complex textures that is artist friendly (painted using conventional
methods) and generalizes across texture categories. Our method
involves a systematic layering of variously-sized textures which
balances randomization and easy customization, and is fast to
render. We also report on the useful design principles. Our work
extends and formalizes the work of Alex Walker [2011].

Technical Details and Implementation
Repetitious textures have visual features that appear periodically.
A tiled texture has a fixed period based on its size. The key insight
to our work is in creating layers of different sizes that repeat at
different periods. By choosing the sizes of the layers, we can
control the effect of repeating to generate noisy textures (e.g.,
grass, dirt, sand) or structures textures (e.g., brick, tiles). The final

texture repeats at a size that is the least common multiple of the
layer sizes. Choosing layer sizes that are relatively prime will
result with the texture repeating only at the product of the sizes.
The size of the non-repeated texture grows roughly exponentially
with the number of layers. For example, layers of widths 5, 7, and
11 will generate a non-repeating texture of width 385 (Fig. 1).
Adding a fourth layer of width 13 increases generated texture
width to 5005. Prime sizes are ideal for generating textures with
very little structure. To generate structured textures, we chose sizes
that have a greatest common divisor proportional to the size of the
intended structure. For example, a brick 8 pixels wide would use
layers of width 5·8=40, 7·8=56, and 8·11=88 generates a texture of
width 3080. Adding a fourth layer of width 8·13=104 generates a
texture of width 40040. Using layers with sizes that are multiples
of relatively prime numbers, artists can create massive, random
textures using conventional methods.

We created a prototype web application using WebGL to test how
expressive our method is for creating textures. The shader
produces the final color by covering or adjusting HSV values for
each layer sampled at the texture coordinate mod the layers size.
We asked an artist to create textures from many different
categories, such as grass, dirt, bricks, and stone (Fig. 2).

Current and Future Work
We present a range of low-resolution texture types and discuss
design principles and strategies for creating rpTextures for video
games. For future work, we plan to run studies to determine
general rules for creating textures that avoid repetition, and we
plan to compare the performance of our method against methods
common in industry. Currently, we focus on using textures for
diffuse reflection of surface. We believe this work can easily
extend to control other surface properties, such as specularity,
emission, normal perturbation, and displacement. We believe that
this can also extend this method to other domains, such as audio.

Figure 2: Example textures: water, grass, gravel, stone, wood
planks, parking lot, brick wall, tree bark.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Authors.
Copyright is held by the authors.

SIGGRAPH ‘17 Posters, July 30–August 03, 2017, Los Angeles, CA, USA
ACM 978-1-4503-5015-0/17/07
10.1145/3102163.3102219

rpTextures: Systematic Layering for Large Texture Generation
Austin E. MacKay Jonathan D. Denning

Taylor University, Indiana USA

Figure 1: (left) Mossy Stone Brick texture, generated from eight layers, has a period of 2432×2432. The largest layer is 128×128.
(middle) All eight layers packed into a single 320×128 graphic texture (borders added to show individual layers). (right) Tiled layers of
sizes 5×5 (red), 7×7 (green), and 11×11 (blue) generate a texture with a period of 5·7·11=385 in width and height.

References
PARZER, S. 2013. Irrational Image Generator. Diploma thesis
(Vienna Univ. Technol., Vienna).

STAM, J. 1997. Aperiodic Texture Mapping. European Research
Consortium for Informatics and Mathematics.

WALKER, A. 2011. The Cicada Principle and Why It Matters to
Web Designers. www.sitepoint.com/the-cicada-principle-and-why-
it-matters-to-web-designers/.

WANG, H., WEXLER, Y., OFEK, E., HOPPE, H. 2008. Factoring
repeated content within and among images. ACM TOG 27, 3.

Figure 3: Large 3D scenes using rpTextures (top) and 16x16 tiled textures (bottom). Although the textures in both images are scaled the
same, rpTextures avoid the repetition seen using tiled textures.

