
meshgit
diffing and merging meshes for polygonal modeling[

jonathan d. denning+, fabio pellacini+∗
+dartmouth college, ∗sapienza university of rome

]

original derivative

notes:

• here’s the problem...
– given these two versions of a mesh, we want to know how the mesh was altered from the

original (on left) to create the derivative (on right).
• ...

original derivative

notes:
• ...
• we might want to do this if we manage a polygonal model repository like blendswap.com or

thingiverse.com and want to detect and measure derivatives or progressive work.
• now if we had access to the full construction history, we could use MeshFlow to visualize the

edits. however, since this data is not always available, let us limit our input to only these two
meshes, as a list of vertex locations and a list of faces, and nothing more.

• ...

original derivative

notes:
• ...
• with only these meshes, we could perform a manual visual inspection, looking at the meshes

side-by-side or overlaying them
• unfortunately this is tedious and error-prone, especially when the edits are minor relative to the

complexity of the mesh.
• ...

original derivative

notes:
• ...
• in the paper, we briefly discuss several different categories of ways to approximate these

changes
• now i will highlight just a few.
• i want to preface the following discussion by saying that these methods produce exceptional

results within the problem domain they were designed. however, when used in our domain, they
are not as effective.

• for the next few slides, let us attempt to determine how the artist might have edited this original
mesh to become this derivative by using some fully-automated algorithms.

del, add

original derivative

notes:

• the simplest explanation of change is that the artist deleted everything of the original and
created the derivative from scratch

• albeit a rather ridiculous explanation for what happened and extremely uninformative, this is a
perfectly valid way for the artist to work

exact matching

original derivative

notes:

• a slightly more involved approach is to assume that any part that does not move beyond an
epsilon was left untouched, and everything else is modified.

• this produces better results, but the results are still not as informative as we would like, as most of
the mesh is marked as changed, even with small geometric changes.

surface correspondence

original derivative

[k
im

e
t

a
l.

20
11

]

notes:

• much excellent work has been done in computing surface correspondences that can produce
outstanding results

• again, while these methods work great in their problem domain, when we applied these
algorithms to our problem we found that they returned fuzzy results that could not be easily
discretized to specific vertices and faces

• furthermore, these algorithms tended not to work well when the adjacency or vertex density
changed between meshes

graph matching

original derivative

[c
o

ur
e

t
a

l.
20

06
]

notes:

• we could turn this problem into a graph matching problem, where vertices and faces are the
nodes of the graph and the mesh adjacencies make up the edges
– we store geometric information (position and normals) as attributes of the nodes.

• using graph matching algorithms, such as spectral graph matching, we see much more
informative results that capture geometric changes, visualized in blue, and the adjacency
changes are better highlighted.

• however, this approach does not work well when the geometry is changed a great deal in
dense areas
– for example, the nostril and "stop" between muzzle and eyes is not handled well.

adjacency matching

original derivative

[e
p

p
st

e
in

e
t

a
l.

20
09

]

notes:

• instead, if we focus on and match only based on the adjacency, we get great results when the
edits contain geometric changes
– notice the nostril and stop is much better handled

• however, adjacency matching does not handle well edits that change adjacency
– for example, the adjacency changes around the vertical ring that run from the neck over the

horn and crown of head prevented the back part of the mesh to be matched well

meshgit

original derivative

notes:

• today, we present meshgit, which combines and balances the properties of the different
matching algorithms

• notice the nostrils, stop, and back of head are handled well. also, the lower jaw
• the extra edge-loop along upper lip and vertically about the head are well highlighted

string edit distance / mesh edit distance

notes:

• inspired by text version control

mesh edit distance
min cost of partially matching meshes

C(O) = Cu(O) + Cg(O) + Ca(O)

Cu : unmatched faces and verts

Cg : geometric changes

Ca : adjacency changes

O : partial matching of two meshes

C(O) = Cu(O) + Cg(O) + Ca(O)

e e′

original derivative

notes:

• the first term computes the cost of unmatched elements ...

C(O) = Cu(O) + Cg(O) + Ca(O)

Cu(O) = Nu +N ′u

N : number of unmatched faces and verts

notes:

• which is simply the number of unmatched elements in the two meshes.

C(O) = Cu(O) + Cg(O) + Ca(O)

original derivative

notes:

• due to the high cost, this term encourages faces and verts to be matched
• so in our example here, all vertices and faces are unmatched

– equivalent to deleting all of original mesh and adding all of derivative

C(O) = Cu(O) + Cg(O) + Ca(O)

e

e′

original

derivative

notes:

• the second term computes the geometric cost of matched elements ...

C(O) = Cu(O) + Cg(O) + Ca(O)

Cg(O) =
∑
e∈E

[
d(xe,xe′)

d(xe,xe′) + 1
+ (1− ne · ne′)

]

E : matched faces and verts
x : position n : normal d(xe,xe′) = |xe − xe′ |

notes:

• ... which is the sum of two functions on the matched elements:
– a distance function on their position,
– a rotation function on their normals.

• note: if the matched element has not been moved or rotated, there is no cost.

C(O) = Cu(O) + Cg(O) + Ca(O)

original derivative

notes:

• this term encourages nearby faces and verts to match
• here we see many faces and vertices have been matched

– some have been transformed, shown in blue
• notice the nostril and stop

– strong geometric changes and high vertex density high prevent this are from matching in
informative ways

• geometric properties is not sufficient (problem seen with exact and graph matching)

C(O) = Cu(O) + Cg(O) + Ca(O)

e1

e2

e′1

e′2

original derivative

notes:

• the third term computes cost of making changes to adjacencies, either by
– unmatched adjacent elements
– ...

C(O) = Cu(O) + Cg(O) + Ca(O)

e1

e2

e′1

e′2

original derivative

notes:
• ...

– or changing distance between matched adjacent elements

C(O) = Cu(O) + Cg(O) + Ca(O)

Ca(O) =



∑
(e1,e2)∈{U,U ′}

1

v(e1) + v(e2)
+

+
∑

(e1,e2)∈{A,A′}

w(e1, e2, e
′
1, e
′
2)

v(e1) + v(e2)

U,U ′ : unmatched adj pair A,A′ : matched adj pair

v(·) : valence w(e1, e2, e
′
1, e

′
2) =

|d(xe1 ,xe2)− d(xe′1
,xe′2

)|
d(xe1 ,xe2) + d(xe′1

,xe′2
)

notes:

• which is the sum of two functions on the adjacent elements:
– a function on unmatched adjacencies,
– a function on the change of distance between matched adjacent elements

• note: there is no cost for matched adjacencies that are unchanged

C(O) = Cu(O) + Cg(O) + Ca(O)

original derivative

notes:

• this term encourages adjacent elements to match adjacent elements of similar distance apart
• notice now that the nostril and stop are much better matched

min C(O) / max common subgraph isomorphism

NP-Hard

notes:

• the problem of minimizing the matching cost function can be turned into a max common
subgraph isomorphism problem which is NP-Hard to solve.

• many approximation algorithms exist, but they are still computationally expensive

iterative greedy algorithm
feasibly approximate med

notes:

• we introduce an iterative greedy algorithm to feasibly approximate the med

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• the algorithm consists of four steps,
• each of which we will demonstrate on these two meshes

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• first, we initialize the matching with exact matching
• this bootstraps the matching with faces and vertices that have not moved

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• next, we repeatedly match or unmatch the pair that ...

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• ... greedily reduces matching cost the most ...

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• ... until none exist
• there are a few details in the paper on how we

– limit number of potential matches,
– account for heavy sculpting,
– handle poor matches.

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• the greedy step can leave small patches of matched elements that are "shifted" relative to
neighboring matches
– this often occurs in dense areas with strong geometric changes

• these shifted regions often block better matches, a sort of local minimum that the greedy step
cannot back out of

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• after removing these small regions, the matching backs out of the local minimum, allowing ...

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• ... the greedy step to continue, producing more informative results

1. init 2. greedy 3. backtrack 4. repeat 2,3

original derivative

notes:

• we repeat 4 times steps 2 and 3, avoiding similar local minima by reducing geometric cost and
backtracking threshold

mesh edit operations
turn one mesh into another

notes:

• directly from the mesh matching we can compute the mesh edit operations that turn one mesh
into another

delete : unmatched geometry in original

add : unmatched geometry in derivative

transform : matched vertices with geometric cost

2-way diff
visualize edits from original to derivative

deleted faces colored red

added faces colored green

transformed vertices colored blue

unmoved vertices colored gray

original derivative

original derivative

original derivative

3-way diff
visualize edits from original to two independent derivatives

brightness of add/del face indicates derivative

overlapping deleted faces colored yellow

derivative a original derivative b

derivative a original derivative b

derivative a original derivative b

diff sequence
visualize edits along sequence

added then deleted faces colored orange

mesh edit merge
combining independent edits

notes:

• visualizing the mesh edit operations is informative
• but where edit ops are really useful is in merging

merge is automatic if edits do not overlap on original

adjacency is maintained; subdivision surfaces

3-way + merge merge subd

notes:

• 3-way diff and merged hand at top
• adjacencies are maintained, according to artists’ work
• subdivision surface works as expected

3-way + merge merge subd

derivative a original derivative b

notes:

• overlapping edits cause conflicts
• bad adjacency if applied

derivative a original derivative b

notes:

• here we see only added and deleted faces
• observe that edits can be partitioned into connected regions
• applying all of a region maintains good adjacency
• only consider overlapping regions

edit partitioning
reduce granularity of conflicts

choose a neither choose b

derivative a original derivative b

notes:

• bottom row is 3-way diff
• top row show three possible ways to resolve merge conflict

– derivative a, original, derivative b

future work

single object / hierarchical, component attributes

low-level ops / high-level operations

diff, merge / spatial undo, feature permutation, etc.

notes:

• we consider all of the mesh as a single object
– performing hierarchical matching or using component attributes (for ex: comp names and

modifiers like mirroring) may improve results and performance
• currently, we turn matching into low-level mesh operations (add, delete, move)

– may be more informative to convert to higher-level operations, such as edge-loop, extrude,
duplicate

• we described just two uses for mesh edit ops: diff and merge
– we believe this can be extended to do other very useful things, such as spatial undoes,

feature permutations

summary

mesh edit distance : match polygonal meshes

iterative greedy algorithm : feasibly approx med

mesh edit operations : visualize, apply changes

edit partitioning : reduce granularity of conflicts

notes:

• in summary, we presented meshgit to diff and merge meshes for polygonal modeling
• we introduced ...

– the mesh edit distance to produce a partial matching of meshes, ...
– an iterative greedy algorithm to feasibly approximate the med, ...
– a simple method for converting matches to mesh edit operations to visualize and merge

edits, ...
– and an edit partitioning rule to reduce granularity of merge conflicts

acknowledgements

blender böhler
goralczyk grassard

kuhn lumpycow
nyman silva
thomas vazquez

williamson

intel nsf sloan foundation

thank you!

original derivative

timing

chairs 3951 4.7s
creature 17433 14.5s
dragon 96616 307.9s
durano 3722 1.5s
hand 209 0.1s
keys 1854 6.7s
shaolin 2158 2.4s
sintel 1810 2.7s
spaceship 2173 0.9s
shuttle 193970 585.3s
woman 13984 33.7s

