

meshgit

diffing and merging meshes for polygonal modeling

jonathan d. denning⁺, fabio pellacini⁺*

†dartmouth college, *sapienza university of rome

origina

derivative

del, add

exact matching

original derivativ

surface correspondence

original derivative

graph matching

original derivative

adjacency matching

original derivative

meshgit

priginal

string edit distance / mesh edit distance

mesh edit distance

min cost of partially matching meshes

$$C(O) = C_u(O) + C_q(O) + C_a(O)$$

 C_u : unmatched faces and verts

 C_g : geometric changes

 C_a : adjacency changes

O : partial matching of two meshes

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

$$\left\{ \begin{array}{c} e \\ \end{array} \right\}$$
 original derivative

$$C(O) = C_u(O) + C_q(O) + C_a(O)$$

$$C_u(O) = N_u + N_u'$$

$$C(O) = C_{\mathbf{u}}(O) + C_g(O) + C_a(O)$$

iginal

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

$$C(O) = C_u(O) + C_a(O) + C_a(O)$$

$$C_g(O) = \sum_{e,e} \left[\frac{d(\mathbf{x}_e, \mathbf{x}_{e'})}{d(\mathbf{x}_e, \mathbf{x}_{e'}) + 1} + (1 - \mathbf{n}_e \cdot \mathbf{n}_{e'}) \right]$$

$$\mathbf{x}$$
: position \mathbf{n} : normal $d(\mathbf{x}_e, \mathbf{x}_{e'}) = |\mathbf{x}_e - \mathbf{x}_e|$

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

lerivative

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

$$C(O) = C_u(O) + C_a(O) + C_a(O)$$

$$C_a(O) = \begin{cases} \sum_{(e_1, e_2) \in \{U, U'\}} \frac{1}{v(e_1) + v(e_2)} + \\ + \sum_{(e_1, e_2) \in \{A, A'\}} \frac{w(e_1, e_2, e'_1, e'_2)}{v(e_1) + v(e_2)} \end{cases}$$

$$(\cdot)$$
 : unmatched adjipair A,A' : matched adjipair (\cdot) : valence $w(e_1,e_2,e_1',e_2')=rac{|d(\mathbf{x}_{e_1},\mathbf{x}_{e_2})-d(\mathbf{x}_{e_1'},\mathbf{x}_{e_2'})}{d(\mathbf{x}_{e_1},\mathbf{x}_{e_2})+d(\mathbf{x}_{e_1'},\mathbf{x}_{e_2'})}$

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

 $\mathsf{min}\; C(O)$ / $\mathsf{max}\; \mathsf{common}\; \mathsf{subgraph}\; \mathsf{isomorphism}$ $\mathsf{NP}\mathsf{-Hard}\;$

iterative greedy algorithm

feasibly approximate med

1. init 2. greedy 3. backtrack 4. repeat 2,3

origino

derivative

1. init 2. greedy 3. backtrack 4. repeat 2,3

rigina

derivative

1. init 2. greedy 3. backtrack 4. repeat 2,3

origino

derivative

1. init 2. greedy 3. backtrack 4. repeat 2,3

origino

derivative

1. init 2. greedy 3. backtrack 4. repeat 2,3

origino

derivative

1. init 2. greedy 3. backtrack 4. repeat 2,3

origina

derivative

mesh edit operations turn one mesh into another

delete: unmatched geometry in original

add: unmatched geometry in derivative

transform: matched vertices with geometric cost

2-way diff

visualize edits from original to derivative

deleted faces colored red added faces colored green

transformed vertices colored blue unmoved vertices colored gray

original derivativ

origina

derivative

3-way diff

visualize edits from original to two independent derivatives

overlapping deleted faces colored yellow

brightness of add/del face indicates derivative

diff sequence

visualize edits along sequence

added then deleted faces colored orange

mesh edit merge

combining independent edits

merge is automatic if edits do not overlap on original

adjacency is maintained; subdivision surfaces

3-way + merge

merge subd

edit partitioning

reduce granularity of conflicts

derivative a original derivative b

future work

```
single object / hierarchical, component attributes
low-level ops / high-level operations
diff, merge / spatial undo, feature permutation, etc.
```

summary

mesh edit distance : match polygonal meshes

iterative greedy algorithm : feasibly approx med

mesh edit operations : visualize, apply changes

edit partitioning : reduce granularity of conflicts

acknowledgements

blender böhler
goralczyk grassard
kuhn lumpycow
nyman silva
thomas vazquez
williamson

intel nsf sloan foundation

derivativ

timing

chairs	3951	4.7s
creature	17433	14.5s
dragon	96616	307.9s
durano	3722	1.5s
hand	209	0.1s
keys	1854	6.7s
shaolin	2158	2.4s
sintel	1810	2.7s
spaceship	2173	0.9s
shuttle	193970	585.3s
woman	13984	33.7s