
MeshGit: Diffing and Merging Meshes for Polygonal Modeling

Jonathan D. Denning∗ Fabio Pellacini∗†
∗Dartmouth College †Sapienza University of Rome

original derivative

derivative a

merged

original

derivative b

merged with

subdivision

Figure 1: Examples of diffing and merging polygonal meshes done automatically by MeshGit. Left: We visualize changes between two
snapshots of the creation of a creature mesh as a two-way diff. The derivative mesh contains many changes, including significant changes
in adjacency (red/green) and geometry (blue) of the gum line and tongue with many additional teeth (left inset) and an extra edge-loop and
inset details on the shoulder ball (right inset). Right: We visualize changes performed between an original mesh and two derivatives as a
three-way diff. Derivative a (left; light colors) adds fingernails, while derivative b (right; dark colors) adds an edge-loop across palm with
reshaping. MeshGit automatically merges these two sets of non-conflicting edits, shown at the top. We show the merged mesh after applying
Catmull-Clark subdivision rules to demonstrate that MeshGit maintains consistent face adjacencies.

Abstract

This paper presents MeshGit, a practical algorithm for diffing and
merging polygonal meshes typically used in subdivision modeling
workflows. Inspired by version control for text editing, we intro-
duce the mesh edit distance as a measure of the dissimilarity be-
tween meshes. This distance is defined as the minimum cost of
matching the vertices and faces of one mesh to those of another.
We propose an iterative greedy algorithm to approximate the mesh
edit distance, which scales well with model complexity, providing
a practical solution to our problem. We translate the mesh corre-
spondence into a set of mesh editing operations that transforms the
first mesh into the second. The editing operations can be displayed
directly to provide a meaningful visual difference between meshes.
For merging, we compute the difference between two versions and
their common ancestor, as sets of editing operations. We robustly
detect conflicting operations, automatically apply non-conflicting
edits, and allow the user to choose how to merge the conflicting
edits. We evaluate MeshGit by diffing and merging a variety of
meshes and find it to work well for all.

Keywords: polygonal modeling, geometry, diff and merge,
visualization

Links: DL PDF

1 Introduction

When managing digital files, version control greatly simplifies the
work of individuals and is indispensable for collaborative work.
Version control systems such as Subversion and Git have a large
variety of features. For text files, the features that have the most
impact on workflow are the ability to store multiple versions of
files, to visually compare, i.e., diff, the content of two revisions,
and to merge the changes of two revisions into a final one. For
3D graphics files, version control is commonly used to maintain
multiple versions of scene files, but artists are not able to diff and
merge most scene data.

We focus on polygonal meshes used in today’s subdivision and
low-polygon modeling workflows, for which there is no practical
approach to diff and merge. Text-based diffs of mesh files are un-
intuitive, and merging these files often breaks the models. Current
common practice for diffing is simply to view meshes side-by-side,
and merging is done manually. While this might be sufficient, albeit
cumbersome, when a couple of artists are working on a model, ver-
sion control becomes necessary as the number of artists increases
and for crowd-sourcing efforts, just like text editing. Meshes used
for subdivision tend to have relatively low face count, and both the
geometry of the vertices and adjacencies of the faces have a signif-
icant impact on the subdivided mesh. Recent work has shown how
to approximately find correspondences in complex meshes [Chang
et al. 2011], and smoothly blend portion of them using remeshing
techniques [Sharf et al. 2006]. These algorithms are unfortunately
not directly applicable to our problem since we want diffs that
captures all differences precisely and robust merges that do not alter
the mesh adjacencies. [Doboš and Steed 2012] recently propose a
version control system that works at the granularity of single object
components, i.e., at the granularity of singular meshes in a scene
graph. We are instead interested in determining differences of ele-
ments of each mesh, namely vertices and faces and their adjacency.

http://doi.acm.org/10.1145/2461912.2461942
http://portal.acm.org/ft_gateway.cfm?id=2461942&type=pdf


Figure 2: Three-way diff for text files. The original file is shown
in the middle, and two derivatives are shown on the left and right.
MeshGit follows a similar metaphor for mesh differences.

MeshGit . We present MeshGit, an algorithm that supports diffing
and merging polygonal meshes. Figure 1 shows the results of
diffing two versions of a model and an automatic merge of two
non-conflicting edits. We take inspiration from text editing tools in
both the underlying formalization of the problem and the proposed
user workflow (see Fig. 2). Inspired by the string edit distance
[Levenshtein 1965], we introduce the mesh edit distance as a
measure of the dissimilarity between meshes. This distance is
defined as the minimum cost of matching vertices and faces of one
mesh to those of another mesh. The mesh edit distance is related to
the maximum common subgraph-isomorphism problem, a problem
known to be NP-hard. We propose an iterative greedy algorithm to
efficiently approximate the mesh edit distance.

Once the matching from one mesh to another is computed, we
translate the found correspondences into a set of mesh transforma-
tions that can transform the first mesh into the second. We consider
vertex translations, additions, and deletions and face additions and
deletions. With this set of transformations, we can easily display a
meaningful visual difference between the meshes by just showing
the modifications to vertices and faces, just like standard diff tools
for text editing. For merging, we compute the difference between
two versions and the original. We partition the transformations into
groups that, when applied individually, respect the mesh adjacen-
cies. This partitioning limits the granularity of the edits in the same
way that grouping characters into lines does for text merging. To
merge the changes from the two versions, we apply groups of trans-
formations to the original mesh to obtain the merged model. Some
groups can be applied automatically, while others are conflicted
and require manual resolution. We robustly detect conflicts by
determining whether two groups from the different versions modify
the same parts of the original, i.e., they intersect on the original. In
MeshGit, non-conflicting groups are applied automatically, while
for conflicting edits, the user can either choose a version to apply or
resolve the conflict manually. We took this approach, as commonly
done in text merging, since it is unclear how to merge conflicting
transformations in a way that respects the artists’ intentions.

MeshGit Uses. We evaluate MeshGit for a wide variety of
meshes taken from user editing sessions in subdivision modeling
workflows. Our tests include meshes that are a mixture of triangles
and quads and can have highly regular or irregular adjacencies.
We found that MeshGit worked well for all these tested meshes.
We choose these types of meshes since they are commonly used
by artists today in production environments. To allow readers to
use MeshGit in their daily workflows, we include source code and
executable in supplemental material.

While MeshGit works well in our context, we do not expect the
computed diffs to be as informative in other modeling workflows
where mesh adjacencies are not of paramount importance, e.g.,
free-form sculpting with dynamic topology or smooth shape
manipulation with remeshing. In these workflows, artists are only
concerned with manipulating geometry, while the system can
change mesh adjacency if needed. For example, Fig. 6 shows
an example of two versions of a mesh obtained with workflows

that allow for remeshing. While MeshGit computes correct mesh
differences, these are, in our opinion, less informative for artists
than just a geometry-only diff. These workflows are out of the
scope of MeshGit, and we leave this for future work.

Contributions. In summary, this paper proposes a practical
framework for diffing and merging polygonal meshes typically
used in low-polygon and subdivision surface modeling. MeshGit
does this by (1) defining a mesh edit distance and describing a
practical algorithm to approximate it, (2) defining a partitioning
rule to reduce the granularity of mesh transformation conflicts, and
(3) deriving diffing and merging tools for polygonal meshes that
support a familiar text-editing-inspired workflow. We believe these
are the main contributions of this paper. The remainder of this
paper will describe the algorithm, present the diffing and merging
tool, and analyze their performance.

2 Related Work

Revision Control. Recent work by [Doboš and Steed 2012] pro-
poses an approach to revision control for 3D models by operating
on the nodes of the scene graph. The edits of two different artists
can be merged automatically when the edits do not affect the same
component, while they need to be manually resolved otherwise.
This effectively sets the granularity of supported mesh transforma-
tions to the individual components of the graph. This is common
practice today, although done manually, as shown in the open
source movie Sintel [Blender Foundation 2011]. MeshGit supports
arbitrary edits on meshes without explicitly requiring them to be
split into components, and can merge the changes onto the same
mesh (see Fig. 1.b.). We leave for future work understanding how
these two approaches might complement each other.

Shape Registration. A visual difference between two meshes
could also be obtained by performing a partial shape registration of
the meshes, and then converting that registration to a set of mesh
transformations. Various mesh registration algorithms exist, as
reviewed recently in [Chang et al. 2011]. Some of these methods
[Chang and Zwicker 2008; Brown and Rusinkiewicz 2007] are
variants of iterative closest point [Rusinkiewicz and Levoy 2001]
that determine piece-wise rigid transformations for different mesh
regions and blend between them. In the case of heavily sculpted
meshes, these algorithms require too many cuts and transformations
to register the shapes. Others use spectral methods [Leordeanu and
Hebert 2005; Sharma et al. 2010] to determine a sparse correspon-
dence between two shapes. [Sharma et al. 2011] uses heat diffusion
as descriptors to overcome topological changes with seed-growing
and EM stages to build a dense set of correspondences. Typically,
these algorithms work by subsampling the mesh geometry since
their computational complexity is too high. [Zeng et al. 2010] pro-
pose a hierarchical method to performing dense surface registration
by first matching sparse features then building dense correspon-
dences using the sparse features to constrain the search space. [Kim
et al. 2011] propose using a weighted combination of intrinsic
maps to estimate correspondence between two meshes. In general,
we find that partial shape registration algorithms perform very well
for finely tessellated meshes where matching accuracy of mesh
adjacencies is not of paramount importance. When applied to our
application though, these algorithms either do not scale very well,
require the estimation of too many parameters, or are not sensitive
enough to adjacency changes to produce precise and meaningful
differences for the meshes typically used in subdivision modeling.
Furthermore, it remains unclear whether converting these partial
matches to transformations is robust for merging. MeshGit formal-
izes the problem directly by turning mesh matching solutions into
mesh transformations that are easy to visualize and robust to merge.



Topology Matching. [Eppstein et al. 2009] propose an algorithm
to match quadrilateral meshes that have been edited by using a
matching of unique extraordinary vertices as a seed for a matching-
propagation algorithm. Because the proposed algorithm does not
take geometry into account, it is robust to posing and sculpting
edits. Furthermore, coupled with an initial mesh-reducing tech-
nique, the proposed algorithm can solve the topological matching
very quickly. However, when applied to the types of edits of the
meshes in this paper, we found that the algorithm did not produce
an intuitive matching. The limitations of topology matching is due
to ignoring the geometry of the mesh. MeshGit strikes a balance
between geometry and topology to produce intuitive results.

Graph Edit Distance. By describing a polygonal mesh as a
properly defined attributed graph, we can reformulate the problem
of determining the changes needed to turn one mesh into another
as the problem of turning one graph into another, which is know as
the graph edit distance [Neuhaus and Bunke 2007]. [Bunke 1998]
shows that computing the graph edit distance is equivalent to the
maximum common subgraph-isomorphism problem, a problem
know to be NP-hard. Several approximation algorithms have been
proposed that differ in the expected properties of the input graph.
We refer the reader to [Gao et al. 2010] for a recent review. We
have experimented with a few of these methods, and found that
they do not work well in our problem domain since they either scale
poorly with model size or since they approximate too heavily the
adjacency costs. For example, [Riesen and Bunke 2009] propose to
approximate the distance computation as a bipartite graph matching
problem. In doing so, they approximate heavily the adjacency
costs, which we found to be problematic. [Cour et al. 2006]
propose methods based on spectral matching, but we found them
to scale poorly with model size and to be generally problematic
when the graph spectrum changes. MeshGit introduces an iterative
greedy algorithm that takes into account mesh adjacencies well.

Assembly-Based Modeling. [Sharf et al. 2006] allows users
to create derivative meshes by smoothy blending separate mesh
components either created specifically or found automatically by
mesh segmentation. Recently, [Chaudhuri and Koltun 2010] and
[Chaudhuri et al. 2011] demonstrate the feasibility of constructing
3D models from a large dictionary of model parts. These methods
work by remeshing components together, so they inherently do
not respect face adjacency in the merged regions. This works well
for highly tessellated meshes, but not for meshes typically used in
subvision surface modeling where we want to maintain precisely
the mesh topology designed by artists.

Instrumenting Software. An alternative approach to provide diff
and merge is to consider full software instrumentation to extract
the editing operations. [VisTrails 2010] let the users explore their
undos histories. [Denning et al. 2011] shows rich visual histories of
mesh construction by highlighting and visually annotating changes
to the mesh. [Chen et al. 2011] demonstrates non-linear image
editing, including merging. All these approaches record and take
advantage of the exact editing operations an artist is performing.
These are semantically richer than the simpler editing operation
that MeshGit recovers automatically. At the same time, these
methods have the burden of a software instrumentation that is not
available in today’s software and would not allow artists to work
with different softwares on the same meshes. Furthermore, despite
having the construction history, it is unclear how to determine
a difference between two similar meshes that were constructed
independently or where there is no clear common original, such as
the meshes in Fig. 3.

3 Mesh Edit Distance

To display meaningful visual differences and provide robust
merges, we need to determine which parts of a mesh have changed
between revisions, and whether the changes have altered the
geometry or adjacency of the mesh elements. Inspired by the string
edit distance [Levenshtein 1965] used in text version control, we
formalize this problem as determining the partial correspondence
between two meshes by minimizing a cost function we term mesh
edit distance. In this function, vertices and faces that are unaltered
between revisions incur no cost, while we penalize changes in ver-
tex and face geometry and adjacency. Optimizing this function is
equivalent to determining a partial matching between two meshes,
where vertices and faces are either unchanged, altered (either
geometrically or in terms of their adjacency), or added and deleted.

Mesh Edit Distance Given two versions of a mesh M and M ′,
we want to determine which elements of one corresponds to which
elements in the other. In our metric, we consider vertices and faces
as the mesh elements. An element e of M is matched if it has a
corresponding one e′ in M ′, while it is unmatched otherwise. A
mesh matching is the set of correspondences O between all ele-
ments in M to the elements in M ′. The matching is bidirectional
and, in general, partial, in that some elements will be unmatched,
corresponding to addition and deletion of elements during editing.
To choose between the many possible matching, we minimize the
mesh edit distance C(O), written as the sum of three terms

C(O) = Cu(O) + Cg(O) + Ca(O)

Unmatched Cost Cu. We penalize unmatched elements, either
vertices or faces, by adding a constant cost of 1 for each element.
Without this cost, one could simply consider all elements of M as
deleted and all elements of M ′ as added. This can be written as

Cu(O) = Nu +N ′
u

where Nu and N ′
u are the number of unmatched elements in M

and M ′ respectively.

Geometric Cost Cg . Matched elements incur two costs. The
first captures changes in the geometry of each element, namely its
position and normal. In our initial implementation, we consider
meshes with attributes, where vertex positions and face normals are
given, vertex normals are the average normals of the adjacent faces,
and face positions are the average position of adjacent vertices.
The geometric cost is given by

Cg(O) =
∑
e∈E

[
d(xe,xe′)

d(xe,xe′) + 1
+ (1− ne · ne′)

]
where E is the set of matched elements e in M with corresponding
elements e′ in M ′, x and n are the position and normal of an
element, and d is the Euclidean distance. We only write this term
for M since it is identical in M ′.

The position term is an increasing, limited function on the
Euclidean distance between the elements locations. This favors
matching elements of M to close-by elements in M ′ and has no
cost for matching co-located elements. We limit the position term
to allow for the matching of distant elements, albeit at a penalty.
We also include an orientation term computed as the dot product
between the elements’ normals to help in cases where many small
elements are located close to one another. To make the position
and orientation terms comparable, we normalize both meshes so
the average edge over both meshes has unit length. By including
position and orientation costs for vertices and faces, MeshGit can
compute directly a cost for matching two elements.



It should be noted that our implementation assumes that vertices are
defined with respect to the same coordinate system during editing.
We believe this is an acceptable assumption since this is common
practice in mesh modeling as gross transformations and posing of
the mesh are generally stored as a separate transformation matrix
or armature by the modeling software. However, if necessary, we
could run an initial global alignment based on ICP [Brown and
Rusinkiewicz 2007] or a shape-based alignment [Dubrovina and
Kimmel 2010] or allow for a rough manual alignment by painting
on corresponding regions. We leave this for future work.

Adjacency Cost Ca. The geometric costs alone are not sufficient
to produce intuitive visual differences since it does not take into
account changes in the elements adjacencies. The exact matching
subfigure in Fig. 4, discussed in the following section, shows a more
complex example of the benefit of explicitly including element ad-
jacencies. We assign adjacency costs to pairs of adjacent elements
(e1, e2) in M and (e′1, e

′
2) in M ′. We consider all adjacencies of

faces and vertices (i.e., face-to-face, face-to-vertex, and vertex-to-
vertex). We include costs for adjacencies that are mismatched be-
tween versions and costs for adjacencies that are matched but with
strongly different geometries. The adjacency term can be written as

Ca(O) =
∑

(e1,e2)∈U

1

v(e1) + v(e2)
+

∑
(e′1,e

′
2)∈U′

1

v(e′1) + v(e′2)
+

+
∑

(e1,e2)∈A

w(e1, e2, e
′
1, e

′
2)

v(e1) + v(e2)
+

∑
(e′1,e

′
2)∈A′

w(e1, e2, e
′
1, e

′
2)

v(e′1) + v(e′2)

with w(e1, e2, e
′
1, e

′
2) =

|d(xe1 ,xe2)− d(xe′1
,xe′2

)|
d(xe1 ,xe2) + d(xe′1

,xe′2
)

where v(e) is the valance of a node e, U are the sets of adjacent
element pairs (e1, e2) in M that do not have matching adjacent
pairs in M ′, U ′ is the corresponding set in M ′, A is the set of
adjacent element pairs (e1, e2) in M that have matched elements
in M ′, and A′ is the corresponding set on M ′.

The adjacency cost has two terms. The first one, defined sym-
metrically over both meshes, penalizes mismatches in adjacencies
between the two meshes when two adjacent elements in a mesh
end up not adjacent in the other. This can happen either if one of
them is unmatched or if they are both matched but to non-adjacent
elements. The cost of each mismatch is the inverse of the valence
in the graph, i.e., the size of the local neighborhoods. This can
be thought of as a normalization that ensures that elements with
a large number of adjacencies (such as extraordinary vertices or
poles) are not weighted significantly higher than elements with
only a few adjacencies (such as vertices at the edges of the model).
Moreover, this normalization works well with meshes that contain
a mixture of triangles and quads or has highly regular or irregular
adjancencies without the need for user-tunable parameters.

The second term, also defined symmetrically over both meshes,
penalizes adjacent pairs that have very different locations in the
two versions with a cost that is proportional to the relative change
in location, normalized by the element valencies. This term ensures
match adjacent pairs of elements to a pair of elements that are rela-
tively the same distance apart, which helps when the mesh has been
heavily sculpted. The term is divided by the size of the local neigh-
borhoods so high-valence elements are not weighted more heavily
than low-valence elements. Note that there is no cost for matched
adjacencies when the distance between elements has not changed.

→ →

greedy step only iteration 1

→ · · ·

iteration 2 final

→ → · · ·

Figure 3: Two-way diffs taken for subsequent steps of our iterative
algorithm, where each iteration refines the differences to become
more precise. These two versions were independently edited, so
neither is the derivative of the other. This is the worst case for
diffing. Nonethless MeshGit handles this case well.

4 Algorithm

Equivalent Graph Matching Problem. Minimizing the mesh
edit distance to determine the optimal mesh matching can be
formulated as a matching problem on a appropriately constructed
graph. Given a mesh, we define such a graph by first creating
attributed nodes for each mesh element, where the attributes are
the element’s geometric properties. We then create an undirected
edge between two nodes in the graph for each adjacency relation
between pairs of elements in the mesh. We can then determine
a good mesh matching by minimizing the mesh edit distance
over the graph. Unfortunately, this matching problem is related
to solving a maximum common subgraph isomorphism problem
[Neuhaus and Bunke 2007; Bunke 1998], that is known to be
NP-Hard in the general case . And, while many polynomial-time
graph-matching approximation algorithms have been proposed
[Gao et al. 2010], we found that they do not work well in our
problem domain, because they either ignore adjacency (i.e. edges
in the graph), approximate the adjacencies too greatly, or do not
scale to thousands of nodes. In MeshGit, we propose to compute
an approximate mesh matching using an iterative greedy algorithm
that minimizes our cost function. We include source code and
executable for our implementation in supplemental material.

4.1 Iterative Greedy Algorithm

We initialize the matching O by quickly determining which parts of
the mesh have not moved. The algorithm then iteratively executes a
greedy step and a backtracking step. The greedy step minimizes the
cost C(O) of the matching O by greedily matching (or removing
the matching between) elements in M to elements in M ′. The
backtracking step removes matches that are likely to push the
greedy algorithm into local minima of the cost function. We itera-
tively repeat these two steps a fixed small number of times (4 in our
case). Figure 3 illustrates how O evolves for subsequent iterations.

Initialization. We initialize the matching O by setting each ele-
ment in one mesh to match its nearest neighbor in the other mesh
if their geometric distance is smaller than an a threshold (0.1 in our
case). We leave unmatched all other elements. This initialization
speeds up the matching in that it quickly match elements that
have not changed geometrically and it is experimentally equivalent



to initializing with the empty matching. Note that if incorrect
assignments happen, they will be later undone.

Greedy Step. The greedy step updates the matching O by consec-
utively assigning unmatched elements or removing the assignment
of matched ones. We greedily choose the change that reduces the
cost C(O) the most, and we remain in the greedy step until no
change is found that is cheaper to perform than keeping the current
matching. Notice that this may leave some elements unmatched.
In practice we found that the greedy step proceeds by growing
patches. This is due to the adjacency term that favors assigning
vertices and faces that are adjacent to already matched ones.

The greedy step may produce unintuitive results since it can get
stuck in local minima, it may produce face matchings with vertices
in an incorrect order, or require duplicating or merging elements.
We handle the local minima with the backtracking step discussed
below. A face match is ill-formed when the vertices are also
matched but in an incorrect order. For example, suppose that a
face f , defined by vertices (a, b, c, d), matches a face f ′, defined
by vertices (a′, b′, c′, d′), where a matches a′, b to b′, c to d′, and
d to c′. We eliminate these cases by unmatching the vertices of
these faces. While allowing for duplication or merging of elements
may be desirable for visualizing certain mesh operations (e.g., a
loop cut), we take a simplified approach and seek to only visualize
added, deleted, or moved elements. We thus remove such matches
by finding and unmatching all adjacent pairs in one mesh that
match elements in another mesh that are not adjacent, all matching
faces with unmatched vertices, and all matched vertices with no
matching faces. We leave visualizing element duplication and
merging for future work.

Backtracking Step. While we found that in many cases the
greedy step alone works well, we encountered a few instances
where the algorithm gets stuck in a local minimum, as shown in
Fig. 3, caused by the order in which the greedy step grows patches.
The geometric term favors assigning nearby elements. However,
if part of the mesh has been sculpted, the geometric term might
favor greedy element assignments that incur small adjacency costs
locally, but large overall adjacency costs as more elements are later
added to the matching. This is the case when a region of connected
faces that have been matched meets the rest of the mesh over
mismatched adjacencies. These disconnected regions are usually
quite small relative to the size of the whole connected component
upon which they reside. These regions are not due to the mesh
edit distance we introduced, but to suboptimal initial greedy
assignments, favored by the geometric term, in sculpted meshes
that may also have edits that affect adjacencies. To eliminate these
small regions, we backtrack by removing the assignments of all
elements in matching regions whose size is small relative to the
component size. The size of a region or component is defined as
the number faces in the region or component, respectively. The
threshold ratio is initially set to 8%. We run iteratively the greedy
and backtracking step four times in total. To help with convergence
and avoiding getting stuck in the same local minimum, at each
iteration we reduce the geometric cost by a quarter and the
backtracking threshold ratio by half.

Time Complexity. The cost of our algorithm is dominated by the
iterative search for the minimum cost operations in the greedy step.
Since we perform O(n) assignments, each of which considers
O(n) possible cases, a naive implementation of the greedy step
would run in O(n2) time. Given the geometric terms for vertices
and faces in the cost function, we can prune the search space
considerably. In our implementation, we only consider the k
nearest neighbors for each unmatched vertex or face and the

meshgit

exact matching shape blending

bipartite graph matching topological matching

spectral graph matching icp+graph cuts

Figure 4: Two-way diffs from different matching algorithms.
Compared to MeshGit, the results of the prior methods contain
more mismatched adjacencies, because the methods either do not
account for adjacencies, do not account for geometry changes, or
produce a fuzzy matching.

neighbors within r hops in the graph. We set k = 10 and r = 2.
Because these prunings can severely decrease the search space, if
an element e1 is unmatched but an adjacent element e2 is matched
to e′2, we also search the k nearest neighbors and r-ball graph
neighborhood of e′2 for potential matches for e1. Such a locality
of searching considerably reduces the computation time without
compromising results even when the meshes have been heavily
sculpted. This reduces the overall cost to O(n logn). Furthermore,
we compute the change in the cost function with local updates
only, since assigning or removing matches only affects the costs in
their local neighborhoods.

4.2 Editing Operations

Given a matching O from a mesh M to another mesh M ′, we can
define a corresponding set of low-level editing operations that will
transform M into M ′. Unmatched elements in M are considered
deleted, while unmatched elements in M ′ are added. Matched
vertices that have a geometric cost are considered transformed (i.e.,
translated), while those without geometric costs are considered
unmodified (thus not highlighted in diffs nor acted on during
merging). Matched faces are considered edited only when they
have mismatched adjacencies; in this case, we can consider them as
deleted from the ancestor and added back in the derivative. Notice
that we do not explicitly account for changes in face geometry since
they are implicitly taken into account in edits to vertex geometry.

Although the set of mesh transformations produced by this process
are very low-level compared to the mesh editing operations in
a typical 3D modeling software (e.g., extrude, edge-split, merge
vertices), we found that this provides intuitive visualizations and
allows to robustly merge meshes. We leave the determination of
high-level editing operations to future work.

4.3 Discussion

Comparison. Fig. 4 shows the results of using different shape
matching algorithms to show visual differences. We included our
method, an “exact” match based where each element is just match
to the closest one (i.e., our initialization step only), bipartite graph



viewed from front viewed from back

Figure 5: Two-way diff showing the main limitation of our
approach. While MeshGit detects most edits correctly, it fails to
properly capture edits in the back leg since both geometry and
adjacencies change significantly.

matching [Riesen and Bunke 2009], spectral graph matching [Cour
et al. 2006], shape blending [Kim et al. 2011], topological matching
[Eppstein et al. 2009], and iterative closest point with graph cuts
[Chang and Zwicker 2008]. The shape blending and iterative
closest point algorithms match vertices only; to generate the visu-
alization, face matches were inferred. The bipartite, spectral, and
topological matching algorithms matched faces instead; we infer
from them vertex matches to visualize our results. We use the same
matching costs for all methods, when applicable. The input meshes
are versions 3 and 4 of the modeling series shown in Fig. 71.

Matching based on only the closest element within a given radius
marks more changes than are actually performed since adjacency
cannot be used to guide the match in sculpted areas. The bipartite
graph matching algorithm matched elements, regardless of the
implied changes to adjacent elements, producing a large number
of mismatched adjacencies. The spectral matching and shape
blending algorithms do consider adjacencies, but only implicitly,
resulting in many mismatched adjacencies where the graph spec-
trum changes due to additional features or blending the matches
becomes fuzzy with additional edge loops or sculpting. The
topological matching algorithm produced topologically consistent
matches regardless of the implied changes to geometry of the
vertices, leading to matches that are clumped or shifted toward the
initial seed matching. The iterative closest point with graph cuts
algorithm worked to align chunks of the mesh, but heavy sculpting
causes the algorithm to require too many cuts. We found these
trends to be present in a variety of other examples.

It is our opinion that MeshGit is able to better visualize complex
edits that include both geometry and adjacency changes, since it
strikes a balance between accounting for both types of changes,
compared to other methods that favor one over the other. This
in turn allows us to produce intuitive visualizations as seen
throughout the paper. In our opinion, this is due to the fact that the
shape matching algorithms we compared with were not designed
specifically for our problem domain, but for other applications for
which they remain remarkably effective. Since there are tradeoffs
in determining good matches in the case of heavily edited meshes,
each algorithm makes a tradeoff specific to their problem domain,
and only MeshGit was specifically designed to address version
control issues of polygonal meshes.

Limitations. The main limitation of MeshGit is that the inclusion
of the geometric term has limitation when matching of components
that were very close in one mesh, but have been heavily transformed
in the other, if sharp adjacency changes occur also. Meshes that are
heavily sculpted are still handled well since in most cases the adja-

1Version 4 in Fig. 4 was modified to contain only the largest connected
component, since the shape blending algorithm requires a single connected
mesh.

original derivative

Figure 6: Two-way diff of meshes with similar shape but different
adjacencies due to remeshing. While MeshGit computes the diff
correctly, the resulting visualization might not be as informative
since in this workflow artists focus only on geometry changes.

cency changes are limited. An example of this limitation is shown
in Fig. 5, where some of the components of the original chair are
split into separate components that are translated and rotated signif-
icantly (e.g., the front left leg and the left arm rest). While MeshGit
matches well parts of the chairs, the most complex transformations
are not detected. Performing hierarchical matching by matching
connected components first followed by the elements of each com-
ponents can help, but it would make edits that partition or bridge
components difficult to detect. For an example of such an edit, the
center back support is broken into two parts, and our algorithm
can currently detect it. These issues might be alleviated by using a
geodesic or diffusion distance in the geometric term, or additional
terms inspired by iterative closest point [Brown and Rusinkiewicz
2007] could be added. At the same time though, we think that
changes such as these might make more common edits undetected,
so we leave the exploration of these modifications to future work.

Furthermore, we believe that while MeshGit is very effective for
mesh edited in typical subdivision modeling workflows, it is not
as effective on fundamentally different editing workflows, namely
the ones that make heavy use of remeshing, where artists are
only concerned about mesh geometry and not adjacency. Figure 6
shows one such example. In these cases, the differences shown by
MeshGit may be correct, but, in our opinion, are less informative
for artists, since MeshGit is concerned about changes in both
geometry and adjacency, while artists in these workflows are only
concerned about overall shape. We believe that these different
workflows are better served by algorithms specifically designed for
them and leave this to future work.

5 Diffing and Merging

Mesh Diff. We visualize the mesh differences similarly to text
diffs. In order to provide as much context as possible, we display
all versions of the mesh side-by-side with vertices and faces
colored to indicated the type or magnitude of the differences. A
two-way diff illustrates the differences between two versions of
a mesh, the original M and the derivate M ′, as in Fig. 1.a. We
display adjacency changes by coloring in red the deleted faces
in M (unmatched or with mismatched adjacencies in M ) and
in green the added faces in M ′ (unmatched or with mismatched
adjacencies in M ′). We display geometric changes by coloring
vertices in blue with a saturation proportional to magnitude of
the movement. In our visualizations, we simplify the presentation
by not drawing the vertices directly but linearly interpolating
their colors across the adjacent faces, unless the face has been
colored red or green. Unmodified faces and vertices are colored
gray. When a mesh M has two derived versions, Ma and Mb, a
three-way diff illustrates the changes between both derivatives and
the original, as shown in Fig. 1.b. We use a color scheme similar
to the above, but the brightness of the color indicates from which



version 1 version 2 version 3 version 4 version 5

version 6 version 7 version 8 version 9 version 10 version 11

Figure 7: MeshGit can be used to visualize construction sequences, here shown on twelve snapshots. Faces are green if added to the current
snapshot or changed from the previous, red if deleted in the next or changed, and orange if added and then deleted or changed both times.
Version 11 is enlarged to show better the fine features added, namely the teeth, claws on hand and feet, and the horn at tip of tail.

derivative the operation comes. When a face has been modified in
both derivatives it is indicated in yellow (Fig. 9).

An artist can also use MeshGit to visualize the progression of work
on a mesh, as shown in Fig. 7. Each mesh snapshot is visualized
similarly to a three-way diff. For each snapshot, a face is colored
green if it was added, red if it is deleted, and orange if the face
was added and then deleted. An alternative approach to visualizing
mesh construction sequences is demonstrated in MeshFlow
[Denning et al. 2011], that while providing a richer display, also
requires full instrumentation of the modeling software.

Mesh Merge. Given a mesh M and two derivative meshes Ma

and Mb, one may wish to incorporate the changes made in both
derivatives into a single resulting mesh. For example, in Fig. 1.b,
one derivative has finger nails added to the hand, while the other
has refined and sculpted the palm. Presently, the only way to merge
mesh edits such as this is for an artist to determine the changes
done and then manually perform the merge of modifications by
hand. MeshGit supports a merging workflow similar to text editing.
We first compute two sets of mesh transformations in order to
transform M into Ma and into Mb. If the two sets of transfor-
mations do not modify the same elements of the original mesh,
MeshGit merges them automatically by simply performing both
sets of transformations on M . However, if the sets overlap on M ,
then they are in conflict. In this case, it is unclear how to merge the
changes automatically while respecting artists intentions. For this
reason, we follow text editing workflows, and ask the user to either
choose which set of operations to apply or to merge the conflict
by hand. We reduce the number of conflicts, thus the granularity
of users’ decisions, by partitioning the mesh transformations into
groups that can be safely applied individually. This is akin to
grouping text characters into lines in text merging.

An example of our automatic merging is shown in Fig. 1.b, where
the changes do not overlap in the original mesh. In this case,
MeshGit merges the changes automatically. Another example is
shown in Fig. 8. In one version the body is sculpted by moving
vertices, while in the other the skirt is removed and the boots are
replaced with sandals, thus also changing the face adjacencies.
These two sets of differences do not affect the same elements on
the original since sculpting affects only the geometric properties
of the vertices. MeshGit can safely merge these edits. The top
subfigure of Fig. 8 show the resulting merged mesh with colors
indicating the applied transformations. On the right we show
recursively applying Catmull-Clark subdivision rules twice to

derivative a

merged

original

derivative b

merged w. subdivision

original w. subdivision

Figure 8: Automatic merge of non-conflicting edits that affect the
adjacencies (derivative a) and geometry (derivative b). We show
both the original and merge after applying Catmull-Clark subdivi-
sion to show that MeshGit maintains consistent face adjacencies.

demonstrate that adjacencies are well maintained.

To handle conflicts gracefully, we make the observation that edits
that change adjacencies will partition the mesh into regions, such
that each region contains faces that are all added, deleted, have
some geometric changes, or are unchanged. If we apply all edits of
one region, we obtain a resulting merge that is valid and respects
the artists changes to adjacencies. Therefore, we partition the edits
by finding connected regions of matched elements (similar to the
backtracking step) that have adjacency changes on the boundaries,
and detect conflicts between the revisions at the granularity of
these regions. This is akin to grouping text changes into line, rather
than applying them as individual characters.

Figure 9 shows an example with a conflicting edit on a spaceship
model. In one version, features are added to the spaceship’s body
and the base of the body has been enlarged. In the other, the
cockpit exterior is detailed and wings are added to the base and
top of the body. In this case, the extended base in the first version
and the added lower wings in the second version are conflicting



merged from a

derivative a

merged non-conflicting

original

merged from b

derivative b

Figure 9: MeshGit detects conflicting mesh differences, visualized
in yellow, between the derivatives, and partitions the changes into
groups that can be applied individually. In this case, the expanded
base of derivative a and added wings of derivative b are conflicting.
All non-conflicting changes are applied automatically, while the
user can choose from which version to include the conflicted ones.
The top row shows three possible ways of resolving the conflict.

edits. MeshGit successfully detected the conflicts to the body and
merged all other changes automatically (top center). To resolve
the conflicts, the user can pick which version of edits to apply and
use MeshGit to properly apply the edits, as shown in the figure,
or simply resolve the conflict manually. The top three subfigures
show three possible ways to resolve the conflicted merge.

6 Results

We tested MeshGit on a variety of meshes whose statistics are
collected in Tab. 1 by running our algorithm on a quad-core
2.93GHz Intel Core i7 with 16GB RAM. All meshes and source
code are available as supplemental material.

Model Selection. We chose meshes from different artists that
likely have different styles of modeling. The creature and durano
meshes are from two series of saved snapshots taken through the
mesh construction history. The sintel, keys, and dragon models
are mesh variations where there is no clear original and derivative.
The chair, shuttle, and woman pairs contains an ancestor and
a derivative mesh. For the hand, shaolin, and spaceship, we
model two derivative meshes from the original one to demonstrate
merging. See supplemental materials for full reference for meshes.
These models span a variety of shape types, including characters to
man-made objects, and are made of a mix of triangles and quads.
MeshGit worked well regardless of the mesh author and whether
their adjacencies were highly regular or irregular. Furthermore,
while we expect that MeshGit will be mostly useful when a mesh
is derived from an ancestor, we have shown that it works well also
when two meshes do not have a clear ancestor. This is significant
benefit over instrumentation-based systems that would not be able
to compare these cases.

Timing. As summarized in Tab. 1, the number of faces of the
meshes in this paper vary widely from hundreds to over hundreds
of thousand. Meshes typically used in subdivision modeling
have tens of thousand of faces. In these cases, MeshGit takes at
most tens of seconds to compute the mesh edit distance, showing
that it can be trivially integrated in a design workflow. We also
include significantly larger meshes used in high-polygon modeling.
MeshGit scales very well also in these cases, taking only hundreds
of seconds. Note that many of the other algorithms we compared
with were not only less precise, but would simply have not run on
these cases. We further expect that these timings to be significantly
improved by a more optimized implementation of our code.

Challenging Models. As seen already throughout out the paper,
MeshGit worked well in our tests for both diffing and merging.

Model Reference Fig. Number of Faces Time
original ver. 1 ver. 2

chairs [Lumpycow] 5 3290 3951 — 4.7s
creature [Goralczyk] 1 11475 17433 — 14.5s
dragon [Böhler] 6 — 88028 96616 307.9s
durano 1 [Vazquez] 7 276 520 520 0.5s
durano 4 7 786 906 1716 0.4s
durano 7 7 1930 2186 2772 1.5s
durano 10 7 3078 3722 — 1.2s
hand [Williamson] 1 199 209 209 0.1s
keys [Thomas] 10 — 1652 1854 6.7s
shaolin [Silva] 8 1850 1850 2158 2.4s
sintel [Blender] 3 — 1810 1712 2.7s
spaceship [Grassard] 9 1827 2173 2031 0.9s
shuttle [Kuhn] 10 166974 193970 — 585.3s
woman orig. [Williamson] 10 13984 — — —
woman deriv [Nyman] 10 — 8616 — 33.7s

Table 1: Statistics for the meshes used in our tests and the timings
to computate of the mesh edit distance between the versions. Full
reference for meshes available in supplemental material.

Figure 10 shows a few challenging cases. The keys dataset is a mix
of triangles and quads with adjacencies that are less regular than
meshes used for subdivision. MeshGit can handle these irregular
cases just as well. The woman pair shows such significant amount
of sculpting and adjacency changes, that at a cursory look it is
not easy to tell that these meshes are related. MeshGit works
well also in this extreme case and clearly highlights the changes
that turned a mesh into the other. Finally, The shuttle model is a
large modeled modeled with thousands of individual components,
whose provenance was not known, that are heavily modified
and sometimes welded together. Even if this model was built as
components, [Doboš and Steed 2012] could not handle it since
the provenance in not known and the components themselves are
sometimes merged. MeshGit simply treats each mesh as a whole
and finds meaningful differences without the need to properly
manage components manually.

7 Conclusion and Future Work

This paper presented MeshGit, an algorithm for diffing and
merging polygonal meshes. Inspired by version control for text
editing, we introduce the mesh edit distance as a measure of the
dissimilarity between meshes and an iterative greedy algorithm
to approximate it. We transform the matching computed from the
mesh edit distance into a set of mesh editing operations that will
transform the first mesh into the second. These operations can then
be used directly to visualize the difference between meshes and to
merge edits. In the future, we would like to extend our implemen-
tation to support diffing and merging of other geometric attributes
(e.g., UV, bone weights, etc.). This should be an easy extension
to MeshGit that would requires us to change our mesh elements
to allow for arbitrary data to be attached with diffing and merging
following similar algorithms. We also plan to explore other uses
of our mesh edit distance in editing workflows. For example, we
believe it would allow “spatial undos”, where all operations related
to a part of the mesh could be removed regardless of the order they
were executed in. Finally, we could use MeshGit to automatically
generate mesh variations from only a few models by automatically
applying different edits combination.

8 Acknowledgements

We would like to thank the authors of the meshes used and
the authors of the matching algorithms for providing source
code and support. This work was partially supported by NSF
(CCF-0746117), Intel, and the Sloan Foundation.



version 1 version 2 original derivative original derivative

Figure 10: MeshGit handles well cases with irregular adjacencies (left), with significant geometric and adjacency changes (middle), and
with high vertex and face counts (167k and 194k polygons from 2254 and 3352 original components respectively). All six of these meshes
are composed of both triangles and quads.

References

BLENDER FOUNDATION, 2011. Sintel. www.sintel.org.

BROWN, B. J., AND RUSINKIEWICZ, S. 2007. Global non-rigid
alignment of 3-d scans. ACM Transactions on Graphics 26, 3
(July), 21:1–21:9.

BUNKE, H. 1998. On a relation between graph edit distance and
maximum common subgraph. Pattern Recognition Letters 18,
689–694.

CHANG, W., AND ZWICKER, M. 2008. Automatic registration for
articulated shapes. Computer Graphics Forum 27, 5, 1459–1468.

CHANG, W., LI, H., MITRA, N., PAULY, M., RUSINKIEWICZ,
S., AND WAND, M. 2011. Computing correspondences in geo-
metric data sets. In Eurographics Tutorial Notes.

CHAUDHURI, S., AND KOLTUN, V. 2010. Data-driven sugges-
tions for creativity support in 3d modeling. ACM Transactions
on Graphics 26, 6, 183:1–183:10.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3D modeling. ACM Transactions on Graphics 30, 4, 35:1–35:10.

CHEN, H.-T., WEI, L.-Y., AND CHANG, C.-F. 2011. Nonlinear
revision control for images. ACM Transaction on Graphics 30,
4, 105:1–105:10.

COUR, T., SRINIVASAN, P., AND SHI, J. 2006. Balanced graph
matching. In NIPS, 313–320.

DENNING, J. D., KERR, W. B., AND PELLACINI, F. 2011. Mesh-
flow: interactive visualization of mesh construction sequences.
ACM Transaction on Graphics 30, 4, 66:1–66:8.

DOBOŠ, J., AND STEED, A. 2012. 3D Diff: an interactive ap-
proach to mesh differencing and conflict resolution. In SIG-
GRAPH Asia 2012 Technical Briefs, ACM, New York, NY, USA,
SA ’12, 20:1–20:4.

DUBROVINA, A., AND KIMMEL, R. 2010. Matching shapes by
eigendecomposition of the laplace-beltrami operator. In Proc.
3DPVT.

EPPSTEIN, D., GOODRICH, M. T., KIM, E., AND TAMSTORF, R.
2009. Approximate topological matching of quad meshes. The
Visual Computer, 771–783.

GAO, X., XIAO, B., TAO, D., AND LI, X. 2010. A survey of graph
edit distance. Pattern Analysis and Applications 13, 113–129.

KIM, V. G., LIPMAN, Y., AND FUNKHOUSER, T. 2011. Blended
intrinsic maps. SIGGRAPH, 79:1–79:12.

LEORDEANU, M., AND HEBERT, M. 2005. A spectral technique
for correspondence problems using pairwise constraints. In In-
ternational Conference on Computer Vision, 1482–1489.

LEVENSHTEIN, V. I. 1965. Binary codes capable of correcting
spurious insertions and deletions of ones. Probl. Inf. Transmis-
sion 1, 8–17.

NEUHAUS, M., AND BUNKE, H. 2007. Bridging the gap between
graph edit distance and kernel machines. World Scientific.

RIESEN, K., AND BUNKE, H. 2009. Approximate graph edit dis-
tance computation by means of bipartite graph matching. Image
and Vision Computing 27, 950–959.

RUSINKIEWICZ, S., AND LEVOY, M. 2001. Efficient variants
of the icp algorithm. International Conference on 3D Digital
Imaging and Modeling.

SHARF, A., BLUMENKRANTS, M., SHAMIR, A., AND COHEN-
OR, D. 2006. Snappaste: an interactive technique for easy mesh
composition. The Visual Computer 22, 835–844.

SHARMA, A., VON LAVANTE, E., AND HORAUD, R. P. 2010.
Learning shape segmentation using constrained spectral cluster-
ing and probabilistic label transfer. In European Conference on
Computer Vision, 743–756.

SHARMA, A., HORAUD, R. P., CECH, J., AND BOYER, E. 2011.
Topologically-robust 3d shape matching based on diffusion ge-
ometry and seed growing. In Computer Vision and Pattern
Recognition, 2481–2488.

VISTRAILS, 2010. VisTrails Provenance Explorer for Maya.
www.vistrails.com/maya.html.

ZENG, Y., WANG, C., WANG, Y., GU, X., SAMARAS, D., AND
PARAGIOS, N. 2010. Dense non-rigid surface registration us-
ing high-order graph matching. In Computer Vision and Pattern
Recognition, 382–389.


