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Figure 1: A material retargeting result, generated by our AppWarp algorithm, where a source measured material (brown leaf) is edited by
applying the reflectance functions found on a template measured material (green leaf). To guide the retargeting process, the user marks pairs
of strokes to specify corresponding regions on source and template. In this case, the user marks the stem (red strokes) and body (green strokes)
on the two leaves. From these correspondences, AppWarp computes a retargeted material that maintains the spatial patterns of the source
while exhibiting reflectance behaviors of the template. Below the zoom-in, the reflectance functions are shown projected into two dimensions
with corresponding user’s strokes overlaid. Data from [Lawrence 2009].

Abstract

We propose a method for retargeting measured materials, where a
source measured material is edited by applying the reflectance func-
tions of a template measured dataset. The resulting dataset is a ma-
terial that maintains the spatial patterns of the source dataset, while
exhibiting the reflectance behaviors of the template. Compared to
editing materials by subsequent selections and modifications, re-
targeting shortens the time required to achieve a desired look by
directly using template data, just as color transfer does for editing
images. With our method, users have to just mark corresponding
regions of source and template with rough strokes, with no need for
further input.

This paper introduces AppWarp, an algorithm that achieves retar-
geting as a user-constrained, appearance-space warping operation,
that executes in tens of seconds. Our algorithm is independent of
the measured material representation and supports retargeting of
analytic and tabulated BRDFs as well as BSSRDFs. In addition, our
method makes no assumption of the data distribution in appearance-
space nor on the underlying correspondence between source and
target. These characteristics make AppWarp the first general formu-
lation for appearance retargeting. We validate our method on sev-
eral types of materials, including leaves, metals, waxes, woods and
greeting cards. Furthermore, we demonstrate how retargeting can

be used to enhance diffuse texture with high quality reflectance.

Links: DL PDF WEB

1 Introduction

Editing Measured Materials. In the past years, the use of
measured materials in Computer Graphics has grown since these
datasets capture the nuances of real-world surface appearance. For
many applications, editing these datasets is desired to permit artistic
control. The editing process is typically comprised of performing
soft selections on the data and applying edits to each selected re-
gion. For example, one might want to increase the roughness of the
body of a leaf without changing its stem. Prior work has focused on
simplifying selection [Pellacini and Lawrence 2007; An and Pel-
lacini 2008], but does not address the issue of finding the proper
editing parameters. For anything but the simplest cases, the latter
remains remarkably cumbersome since editing parameters are not
intuitively related to appearance changes. This implies that signifi-
cant trial-and-error is needed after selection, e.g., minutes for sim-
plest cases as reported in [Kerr and Pellacini 2010]. This is further
complicated by the fact that different material datasets use different
representations: from analytic (e.g. Cook-Torrance [1982] BRDFs)
to sampled tables (e.g., [Ashikhmin et al. 2000]). These different
representations require entirely different editing operations and po-
tentially hundreds of parameters for the sampled representations,
making the process even harder.

Retargeting Measured Materials. In this paper, we focus on
editing spatially-varying measured materials that can be described
by spatially-varying BRDFs (bidirectional reflectance distribution
function) for opaque surfaces or heterogenous BSSRDFs (bidirec-
tional subsurface reflectance distribution function) for optically-
thick translucent materials. Inspired by color transfer methods,
we propose to edit a source measured material by applying the re-
flectance functions defined in a template dataset. For example, as
seen in Fig. 1, one might want to apply the reflectance functions
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of a young leaf to rejuvenate an old one. The resulting dataset is
a spatially-varying material that maintains the spatial patterns of
the source datasets, while exhibiting the reflectance behaviors of
the template. Compared to select-and-modify editing workflows,
the main benefits of appearance retargeting is a drastic reduction
in the user interaction needed to obtain the edited results, just like
color transfer. In our work, the user only has to mark sparse corre-
spondences in the two datasets, using rough strokes, to indicate the
desired edits.

Retargeting Principles. In generating the results of this paper, we
found necessary to enforce the following principles. We share the
first two principles with appearance-space edit propagation [Pel-
lacini and Lawrence 2007].

1. To maintain the spatial patterns of the source dataset, we
should enforce the policy that similar source appearance is
retargeted to similar appearance in the template. Note that
while our goal is to maintain patterns in the spatial domain,
the corresponding policy is formulated entirely in the appear-
ance domain.

2. To remain intuitive to users and support artistic exploration,
the specified user correspondences should be satisfied after
retargeting.

In addition, we introduce three new principles that are specific to
retargeting.

3. The retargeting algorithm should be independent of the ap-
pearance representations, supporting all models from analytic
to sampled ones.

4. The result of retargeting should maximally reproduce the rich-
ness of variations of the template data by ensuring that the
variance of the dataset is present in the result.

5. To maintain the realistic look of the template data, the re-
sulting datasets should contain reflectance functions either
present in the template dataset or carefully interpolated from
template functions that are neighbors in the appearance do-
main. In generating the results in this paper, we found that
copying template functions directly worked well.

AppWarp. This paper presents AppWarp, an algorithm for ap-
pearance retargeting that enforces the requirements stated above.
Our algorithm works on spatially-varying BRDFs and heterogenous
BSSRDFs, regardless of the chosen representation. For the remain-
der of this section, we will describe our proposed method for the
case of BRDFs to simplify the presentation. We formulate retar-
geting as the problem of assigning a BRDF in the template dataset
for each BRDF in the source, under the constraints that user corre-
spondences are respected, the richness of variations in the original
dataset is well reproduced and that similar template BRDFs are as-
signed to similar source BRDFs. Our algorithm works entirely in
the appearance domain.

Our key observation is that we can make the algorithm drasti-
cally more efficient and numerically stable by working on low-
dimensional projections of each dataset, since we only need to
compute this retargeting map between source and template BRDFs,
rather than all possible BRDFs. We use the term appearance space
to indicate these low dimensional projections. We use multidimen-
sional scaling to compute these projections since it will maintain
distances between all pairs of points in the space, thus allowing us
to efficiently measure appearance similarity as Euclidean distance.
As in prior work [Matusik et al. 2003; Wang et al. 2006], we found
that the intrinsic dimensionality of the each individual datasets is
low (two to three dimensions for the datasets in this paper). Fig-
ure 1 shows the appearance spaces of source, template, and result,
where each point corresponds to a BRDF in the dataset, and dis-
tance between two points corresponds to the distance between the
corresponding BRDFs.

We retarget the source by nonlinearly warping source points in the
appearance space onto template points in such a way that the re-
gions stroked on source and template maximally overlap after the
warping to respect user’s intentions, and that the global shapes of
the two point sets maximally overlap after the warping to reproduce
the rich variance of the template. The warping function is nonlin-
ear and locally smooth to adapt to the complex shapes of source
and template data and to ensure that similar source points are retar-
geted to similar template ones. We compute this warping function
by solving a soft-constrained nonlinear optimization using an iter-
ative method that converges in a few seconds. After the warping
is computed, source and template are aligned, and we can assign
the closest template point to each source point. Figure 1 shows the
source dataset aligned with the template dataset in the appearance
space after the warping.

Material and User Input. AppWarp is independent of the repre-
sentation of the BRDF, depending only on a distance metric that
can be defined for all representations. This allows us to support
any measured BRDF type. Furthermore, it also allows for cross-
representation retargeting where source and template are not stored
using the same representation. We have tested AppWarp on a vari-
ety of BRDF representations, from analytic to sampled models, and
found it to the work well for all cases.

We have extended the basic algorithm to support heterogenous
BSSRDFs by leveraging the SubEdit representation [Song et al.
2009]. SubEdit decouples the BSSRDF defined for each pair of
points into scattering profiles defined independently at each loca-
tion. This allows us to compute distances and copy template data
independently at each point, which are the only assumptions of our
algorithm. We also show that our algorithm can be used to enrich
albedo images with full reflectance data by using an albedo image
as source and a measured material as template datasets.

Finally, we found that for all results in this paper, only a few sec-
onds of user interaction is needed to perform a retargeting, since
AppWarp is robust with respect to small errors in user input.

Comparison to Prior Work. Ignoring differences in user inter-
action, the main distinction between our approach and prior work
is that we make no assumptions on the distribution of points in
the appearance domain. Appearance-space edit propagation [Pel-
lacini and Lawrence 2007; An and Pellacini 2008] linearly interpo-
lates editing parameters, thus matching template appearance only
for simpler distributions than the ones we found in our datasets
(e.g., see Fig. 1). Appearance transfer methods either assume that
appearance space is a function of geometry or weathering [Mertens
et al. 2006; Lu et al. 2007; Wang et al. 2006] or that source and
target come from the same distribution [Dong et al. 2010; Debevec
et al. 2004]. AppWarp makes no such assumptions, allowing retar-
geting of a much larger variety of datasets.

Contributions. In summary, this paper proposes an algorithm for
material retargeting that makes the following contributions:
• we present the first general retargeting algorithm that works

for very different datasets, including retargeting of BRDFs
and BSSRDFs, and enriching albedo images,

• we determine principles sufficient for meaningful retargeting,
• we derive an appearance-space warping algorithm that re-

spects those principles,
• our algorithm is independent of the specific BRDF represen-

tation, even allowing cross-representation retargeting.

2 Related Work

Appearance Propagation. Editing measured materials is chal-
lenging since edits need to respect the intricate spatial patterns



Figure 2: Top: Comparison of retargeting by AppWarp using all appearance-space dimensions (in this case two) versus projecting all points
onto one dimension as in suggested in [Wang et al. 2006]. Note how the variance in the data is not preserved after the one-dimensional
retargeting. Bottom: Comparison of AppWarp with n-dimensional histogram matching [Pitié et al. 2007]. The noise generated by histogram
matching is a result of the attempt to match distributions perfectly, thus violating the principle that similar template reflectance functions
should be assigned to similar source ones. Data from [Lawrence 2009].

found in the data and preserve the richness of the reflectance func-
tions. [Pellacini and Lawrence 2007] proposed an algorithm where
users specify editing parameters at a set of sparse locations by draw-
ing rough strokes. The algorithm computes a soft selection for
each stroke and propagates the stroke’s editing parameters to the
rest of the dataset by linearly interpolating their values based on
these selections. [An and Pellacini 2008] generalize on this work by
proposing a more robust algorithm that works for both images and
measured materials. These methods support arbitrary edits while
ensuring that regions of similar appearance receive the same edit.
In the context of retargeting, two issues arise in attempting to match
the template appearance. From a user interaction perspective, sig-
nificant time is required to determine the editing parameters. [Kerr
and Pellacini 2010] showed that minutes are required for analytic
representations that have only a few parameters, making it imprac-
tical to edit more complex representations such as the microfacet
model presented in [Wang et al. 2008] where an artist would have
to adjust hundreds of parameters. In retargeting, we entirely obvi-
ate the need to specify editing parameters. At a more fundamental
level, since the editing parameters are propagated linearly, the over-
all target appearance is only matched for simpler distributions than
the ones we found in our datasets (e.g., see the shape of appearance
space in Fig. 1). In AppWarp, we employ a nonlinear warp that
guarantees that the look of the template is reproduced.

Appearance Transfer. Prior methods in appearance transfer fall
into two main categories. Examples of first category include
[Mertens et al. 2006], [Lu et al. 2007], and [Wang et al. 2006],
where transfer is performed under the assumption that the appear-
ance space is a function of geometric information or weathering
degree maps. In our work, we make no such assumptions and allow

for a more general retargeting operation. For example, we show in
Fig. 2 that using the method proposed in [Wang et al. 2006] for re-
targeting does not provide satisfactory results. Examples of the sec-
ond category include [Dong et al. 2010] and [Debevec et al. 2004],
where the appearance of a small set of high-dimensional exemplars
is transferred to a large set of low-dimensional projections under
the assumption that source and target come from the same material,
i.e., the point sets have the same distribution in appearance space.
AppWarp is a more general method that allows retargeting between
two different datasets, strongly relaxing the assumptions taken in
this prior work.

Color Transfer. In color transfer, the user recolors a source image
by matching the color distribution of a template image. Automatic
transfer methods attempt to globally match the color distributions of
source and template, either by exactly matching the color distribu-
tions via histogram matching [Pitié et al. 2007] or by assuming sim-
ple distributions such as Gaussian mixtures [Reinhard et al. 2001].
However, artifacts are generated in the results when the source and
template distributions are sufficiently dissimilar, which is the case
for the majority of image pairs. Region-by-region methods have
been introduced to attempt to address this well-known issue, rely-
ing on image domain segmentation to perform the clustering (see
[An and Pellacini 2010] for a recent review). For corresponding
regions, a transfer function is computed by matching distributions,
and propagated to the rest of image using edit propagation meth-
ods. Our work is inspired by user-guided color transfer algorithms
in terms of workflow exposed to users.

The main difference of our work with color transfer methods is that
the latter work on low-dimensional vectors, while we work on high-



Figure 3: A crop showing the details of the retargeting result from
Fig. 1 computed with different sampling rates in a two dimensional
appearance space. From left to right are results generated using
50, 200, and 500 subdivisions for each appearance-space dimen-
sion, corresponding to a warp function represented by roughly 600,
3000, 9000 affine matrices. Note that the result becomes stable at
roughly 200 subdivisions. Data from [Lawrence 2009].

dimensional reflectance functions defined in a variety of represen-
tations. While the appearance spaces of source and target are low
dimensional, these spaces are data dependent and differ between
source and target. Color transfer algorithms take advantage of the
fact that all colors are defined in the same low-dimensional RGB
(or Lab) space by using heuristics valid in these known spaces.
Furthermore, most color transfer methods generate new colors not
present in the template. In our case, we cannot generate new re-
flectance functions arbitrarily since this likely leads to unrealistic
appearance.

3 Appearance Retargeting

Appearance Retargeting. We define retargeting as the process of
applying the reflectance functions defined in a template measured
material to a source measured dataset in a way that maintains the
spatial patterns of the source. In general, determining which re-
gions of the template data are applied to which region of the source
is arbitrary. In our work, we let the user define this assignment. To
minimize user interaction, we ask artists to mark corresponding re-
gions on source and template using pairs of rough strokes. Based on
these stroke-to-stroke correspondences, our algorithm computes a
point-to-point correspondence between each location in the source
to one location in the template. The retargeted dataset is then gen-
erated by assigning the corresponding template reflectance for each
source point. The remainder of this section describes our algo-
rithm and compares it to other methods. While our method sup-
ports BRDFs and BSSRDFs, we focus on the former to simplify
the description. Notice that while we chose to use sparse strokes
since they have shown to work well in material editing [Pellacini
and Lawrence 2007], our algorithm works for any type of sparse,
user-defined correspondence between source and target.

Appearance Space. As shown in prior work [Matusik et al. 2003;
Wang et al. 2006], we observe that the intrinsic dimensionality of
measured material datasets is low due to the self-similarities in ap-
pearance among points on the same surface. To improve computa-
tional efficiency and numerical stability, we project these datasets
into low-dimensional spaces using a distance preserving method.
For efficiency reasons, we have chosen to use landmark MDS [de
Silva and Tenenbaum 2004] for all the results shown in this paper1.
For the datasets included in this paper, we found that two or three
dimensions are sufficient to capture most of the variance2. Since

1We have also tested landmark Isomap [Tenenbaum et al. 2000]. We
found that while the shapes of the point sets computed using Isomap versus
MDS can be different, the results are visually the same. We believe this is
because our method relies on local distances rather than on global ones.

2As discussed in Sec. 3.3, our algorithm does not depend on the partic-
ular intrinsic dimensionality of the data, provided it is low, but only on the
requirement that the dimensionality of the template dataset is lower or equal

MDS computes projections up to a rotation, we roughly align the
resulting spaces onto each other by applying a global affine trans-
formation that aligns the centers of corresponding stroke pairs.

For each dataset, the result of dimensionality reduction is a col-
lection of projections of the BRDFs in the dataset. These low-
dimensional projections span a low-dimensional space that we refer
to as appearance space. More specifically, each point si ∈ S of the
source point set S in appearance space corresponds to the BRDF
ρi defined at surface point h in the source dataset, and each point
tj ∈ T of the template point set T in template appearance space
corresponds to the BRDF ρj defined at surface point k in the tem-
plate dataset.

Distance Measure. To compute the low-dimensional projections
using MDS, we only need to define a distance metric between any
two BRDFs. We follow prior work [Wang et al. 2006; Pellacini and
Lawrence 2007] and measure the similarity in reflectance function
BRDFs ρ and ρ′ as:

d2(ρ, ρ′) =

∫
Ωi

∫
Ωo

(ρ(ωi, ωo)− ρ′(ωi, ωo))2cos(ωi)dωodωi,

where Ωi and Ωo are defined with respect to the local frame, so that
dmeasures distances in appearance regardless of the underlying ge-
ometry. For anisotropic materials, we pick a local frame by finding
the main direction of anisotropy based on the statistical properties
of the NDFs. We then rotate anisotropic BRDFs to be aligned with
respect to their local frame. Figures 7 and 8 show examples of
retargeting with anisotropic materials. To reduce the cost of evalu-
ating this function for all pairs of points, we follow [Pellacini and
Lawrence 2007] and approximate this integral by sampling while
ensuring that all specular peaks are well accounted for.

3.1 Constrained appearance-space warping

Retargeting as Warping. In appearance space, retargeting can
be expressed as mapping the appearance-space coordinates of each
point si ∈ S to a point tj ∈ T . This mapping can be expressed as
applying a warping function F : S → T . The goal of our method
is to compute a warping function F that respects the principles we
listed in the introduction. The application of the warping function
is illustrated in Fig. 1. To remain independent of the BRDF rep-
resentation (principle 3), we compute the warping function solely
based on appearance-space coordinates, since these are derived by
a distance metric that is defined independently of the chosen BRDF
representation.

Warping Function Representation. One might wonder whether a
simple warping function works well for retargeting. We found that
because of the complex and case-by-case varying shapes of these
appearance spaces, simple heuristics don’t work as well. Inspired
by moving least square techniques [Schaefer et al. 2006], we chose
a warp function that is locally linear, thus efficient and stable to fit,
and globally nonlinear, thus able to capture the global shape of the
data in appearance space. Specifically, we represent the warping
function F as a set of affine transformations defined at a sparse set
of points in the appearance space. To determine these locations, we
first partition the appearance space as a uniform grid of bins. All
source points si contained in the same bin b share the same affine
transformation Mb specified at the center of the bin pb. Note that
we only need the affine Mb if at least one source point is present in
that bin, giving us a sparse sampling of the appearance space. With
this representation we can write the warping function as

F (si) = Mbsi = s′i for si ∈ bin b.

We found that the quality of results is not affected by this sampling
provided that there are enough samples to capture the global shape

to the dimensionality of the source.



of the point set and maintain its variance. Figure 3 shows the typi-
cal behavior of how sampling rates affect the quality of results for
different binning. For all results in this paper, we found experimen-
tally that using 200 subdivisions for each dimension works well.
This corresponds to roughly 2,000 to 10,000 samples depending on
the shape of the source dataset.

Warping Function Optimization. To determine the affine matrices
Mb, we formulate an optimization problem in such a way that the
principles stated above are respected. More specifically we mini-
mize a function of three terms:

arg min
Mb

∑
b

∑
b′∈Nb

zb,b′ ||(Mb −Mb′)pb||2

− |S|∑
k |Ŝk|

∑
k

O(T̂k, R̂k)−O(T,R),

with zb,b′ = exp(−|pb − pb′ |2/2σ2)

where O measures the overlap of two point sets, R is the set of
points resulting from applying F to each point in S, Nb is the set
containing the nearest neighbors of point pb in appearance space,
zb,b′ is the similarity between points b and b′ defined as in [Pel-
lacini and Lawrence 2007], T̂k and R̂k are the point sets formed by
the k-th stroke pair. For all results in this paper we use 10 nearest
neighbors as in [Pellacini and Lawrence 2007]. In this function, the
first term preserves local neighborhoods, the second ensures over-
lapping of stroke pairs, and the last maximizes the overlapping of
the whole point sets.

Each term of this optimization function corresponds to imposing
one of our principles. To enforce that source points with similar ap-
pearance are mapped to similar template points (principle 1), thus
maintaining the spatial patterns of the source in the result mate-
rial, the warping function should be locally-smooth as to preserve
local neighborhoods after retargeting. To respect the user’s inten-
sions (principle 2), the warping function should map stroked source
points to the corresponding stroked points in the template. To re-
produce the rich variance of the template datasets (principle 4), the
warping function should deform the source point set as to maxi-
mally overlap with the overall shape of the template one.

To measure the overlap O between two point sets X and Y , we
compute the occupancy o of each bin b for each dataset as oXb and
oYb , where ob = 1 if there is at least one point from the point
set present in bin b, and evaluate their overlap as the number of
bins where the X and Y have the same occupancy as O(X,Y ) =∑

b δ(o
X
b , o

Y
b ) where δ is the Kronecker delta. Intuitively, the more

the two point sets overlap, the larger the value O(X,Y )3. Note
that our overlapping measure O is different than measuring the dif-
ference of cumulative distribution functions (CDFs) as histogram
matching does. As we will show later in this section, it is in fact
our belief that matching CDFs fundamentally violates the principle
that similar template points should be assigned to similar source
ones.

Reflectance Copy. To ensure that only template BRDFs are used
in the result (principle 5), we map each warped source point to the
closest template one. Applying the affine transformations obtained
from this optimization gives us a result point set s′i = F (si) that
closely overlaps with the template point set (e.g., see Fig. 1). For
each point s′i, we perform a nearest neighbor search to find the clos-
est template point tj ∈ T . We then assign the template reflectance
function ρj to the source location i. In general, this copy operation
might have the drawback of assigning too many source points to

3While the Hausdorff distance might have also worked well to compute
this measure, we found it computationally too expensive to employ.

Figure 4: Example of limitation of AppWarp. Without considering
the spatial arrangement of samples, two different parts of the paper
cannot be assigned to the body of the leaf. Furthermore, since the
template is higher dimension than the source, the variance of the
template is mapped randomly to the source data, generating what
looks like strong noise in the spatial domain. Data from [Lawrence
2009].

the same template reflectance. We found this not to be the case for
our application, since for high resolution datasets the appearance
space is densely sampled, thus reducing the possibility of multiple
copies. As an alternative, one could “interpolate” a new template
BRDF from its nearest neighbors in appearance space. In our exper-
iments, we found that this was not desired since copying the closest
BRDF worked well and since, for nonlinear analytic models, prop-
erly interpolating BRDFs is a complex operation.

Solving Optimization. Due to the presence of the O terms, com-
puting the affine matrices Mb amounts to solving a large nonlinear
optimization. We solve this optimization with an iterative simplex
method that requires careful initialization to ensure convergence.
To initialize the affine transformations, for each bin c, marked by a
source stroke in Ŝ, we assign a corresponding bin c′ in the corre-
sponding template stroke T̂ . This provides us with a set of pairwise
correspondences (pc,p

′
c). We compute this assignment with the n-

dimensional histogram matching procedure presented in [Pitié et al.
2007], but we match occupancy rather than CDFs. We then com-
pute an affine matrix at each sample in the source point set using
moving least squares [Schaefer et al. 2006] by minimizing the equa-
tion arg minMb

∑
c zb,c|Mbpc−pc′ |2. Intuitively, this tries to find

an affine that can best transform all the stroked bins pb in the source
to their corresponding p′

b in the template, where the closer a bin pb

is to a stroked point pc, the more the latter influences the final affine
transformation. Note that the steps taken for initialization already
respect the principles we want to apply for retargeting.

Starting from this initial assignment, we determine the final solution
using the iterative simplex method [Lagarias et al. 1998]. Due to
the large number of parameters to solve, we choose to optimize
over a small subset of parameters (we used 10) chosen randomly at
every iteration. In our experiments, we randomly pick bins whose
δ = 1, or whose neighboring bins have δ = 1, because they are
in areas where the two point sets are not overlapping. We found
this process to converge well, also helped by the choice of initial
configuration, and produces visually stable results that match the
optimization with all parameters.

3.2 Comparison to Prior Work

To the best of our knowledge, this paper is the first to present an
algorithm for retargeting measured materials that is general with
respect to material type and the distribution of points in appearance
space. One could argue though that simpler methods, inspired by
color transfer or material transfer, might work for retargeting and
obviate the need for our warping algorithm. However, we found the
opposite to be true.



Histogram Matching. In color transfer, histogram matching [Pitié
et al. 2007] is a commonly used statistical method that transfer the
color from a template to a source by matching cumulative distribu-
tion functions (CDFs) between two n-dimensional datasets. How-
ever, this method results in strong visual artifacts when the dis-
tributions of the two datasets are dissimilar [Pitié et al. 2007; An
and Pellacini 2010]. We found this to be the case for most mate-
rial retargeting examples we have tested. For example, the bottom
row of Fig. 2 shows a comparison retargeting greeting cards using
our method and n-dimensional histogram matching applied to the
appearance-space coordinates. As can be seen, histogram match-
ing is too strict in respecting CDFs, thus violating the user con-
straints as well as introducing visible noise in the result. This is
a fundamental limitation of this method since its basic principle,
i.e., matching cumulative distribution functions (rather than occu-
pancies), violates the principle that similar source appearance is re-
targeted to similar appearance in the template thus does not lead to
meaningful retargeting results.

Appearance Manifolds. [Wang et al. 2006; Gu et al. 2006] ana-
lyzed time-varying BRDFs, typically from aging or weathering pro-
cesses, and found that one-dimensional nonlinear appearance man-
ifolds capture well the degree of aging at each pixel in the dataset.
[Wang et al. 2006] uses these manifolds to synthesize new mate-
rials by generating one-dimensional weathering degree maps via
texture synthesis and looking up the BRDFs from the original data.
While this appears similar to our work, there are two main distinc-
tions. First, we do not rely on texture synthesis but seek instead
to maintain the source patterns. More importantly, we found that
one-dimensional projections do not capture enough of the variance
on most measured datasets. For example, it is obvious from the low
dimensional projections shown in Fig. 1 that one dimension is not
sufficient to capture major variances in the datasets. This means
that retargeting in one dimension will create unsatisfactory results.
The top row of Fig. 2 shows a comparison between retargeting in
one and two dimensions. Note how the one-dimensional projection
not only loses the richness of the original datasets, but also breaks
the original spatial patterns of the data, whereas our result resem-
bles the template while exhibiting no visual artifacts.

3.3 Limitations

The underlying assumption of our algorithm is that retargeting is
purely an appearance-space operation. It is possible though that
a user might want to retarget different parts of an object with the
same appearance to different template locations, as has been shown
in local color transfer [An and Pellacini 2010]. While this might
be desirable, it inevitably requires the introduction of discontinu-
ities and gradient reversals in the appearance domain that generate
visible artifacts in the result. We believe that if these spatial retar-
geting operations are desired, our retargeting approach needs to be
coupled with soft selection and propagation methods, but we leave
this to future work.

Another assumption of our algorithm is that the intrinsic dimension-
ality of the template dataset is lower or equal to that of the source.
Without this constraint, some of the variance of the template would
be assigned randomly to source points causing noise in the result.
While this is clearly a limitation of our approach, we feel that in
this situation it is not possible to perform retargeting effectively,
since this mismatch in dimensionality means that the source data
has inherently less variance than the template which simply cannot
be used as guidance. In fact we feel that this is an advantage of our
method, compared to other ones such as histogram matching, since
we have a clear definition of when transfer will fail (lack of variance
in the source compared to the template in appearance space).

Figure 4 shows an example where both these limitations are present

Figure 5: Retargeting results between heterogeneous BSSRDF
datasets of waxes and marble. For each dataset, the top row is
rendered under a large area light, while the bottom is rendered us-
ing a line light to show the scattering effects. Data from [Song et al.
2009].

(see Table 1 for the dimensionality of the appearance spaces).

4 Extensions

Surface scattering. The behavior of subsurface scattering materi-
als is modeled by the bidirectional subsurface scattering distribution
function. The BSSRDF S(xi, ωi;xo, ωo) relates the outgoing radi-
ance L(xo, ωo) at a point xo to the incoming radiance L(xi, ωi) at
xi as

L(xo, ωo) =

∫
A

∫
Ω

S(xi, wi;xo, wo)L(xi, wi)(n(xi)ω̇i)dωidxi,

where A is the area around xo, Ω is the hemisphere around xi, and
n(xi) is the normal at xi. In subsurface scattering materials, the
appearance at any surface point is not independent from other sur-
face points. This non-local behavior makes it impossible to directly
use our retargeting algorithm that relies on copying reflectance in-
dependently at different surface location. However, given a proper
representation of BSSRDFs, retargeting can indeed be performed.

SubEdit [Song et al. 2009] models the non-local behavior of the
diffuse component of the BSSRDF as the product of two local scat-
tering profiles, defined at the outgoing and incoming points. These
scattering profiles are one-dimensional functions Px defined at each
surface location x independently from one another. Intuitively, the
scattering profiles measure the decay in light scattering with respect
to distance from the point x. Distances between two BSSRDFs Sx

and Sy defined at x and y can be defined as:

d2(Sx, Sy) =

∫ ∞

0

||Px(r)− Py(r)||2rdr,

where Px and Py are the scattering profiles of surface point x and
y. In [Song et al. 2009], the authors show how independent edits to
scattering profiles generate plausible BSSRDFs. We follow a sim-
ilar approach for retargeting. We use the above distance metric to
compute an appearance space for the scattering profiles, and em-
ploy our algorithm to warp the appearance space points and copy
the scattering profiles independently from one to another to retarget
the original BSSRDFs. Figure 5 shows that our algorithm gives sat-
isfactory results for heterogenous subsurface scattering materials as
well.



Material Representation Resolution Sampled bins Dim.

green oak linear Phong 500× 600 2392 2

brown oak linear Phong 512× 562 3227 2

green ivy linear Phong 497× 453 1806 2

dove Ward 220× 255 3496 3

leaf card linear Phong 300× 400 3942 3

yellow wax BSSRDF 110× 110 5324 2

blue wax BSSRDF 88× 232 6018 2

art stone BSSRDF 107× 112 3287 2

rusted metal linear Phong 795× 365 4952 3

ring texture texture 408× 303 9654 3

scissor rgbn 1000× 446 14292 3

maple wood Marschner 352× 303 5258 2

walnut wood Marschner 407× 351 5622 2

burning wood Torrance 512× 512 1210 2

drying wood Torrance 300× 300 2827 2

copper patina Microfacet 497× 473 5682 3

Table 1: Statistics for the material datasets shown in the paper,
including reflectance representation, data size, number of samples
used in optimization, and the dimensionality of the dataset.

Enrichment. Our algorithm can also be extended to datasets other
than materials that can be represented in low dimensional spaces.
One useful application might be to use a measured material as tem-
plate to enrich diffuse texture maps and derive a SVBRDF dataset
based on the diffuse value only. The only requirement for this to
work is that the dimensionality of the template is less than or equal
to the dimensionality of the diffuse map. An example of diffuse tex-
ture enrichment can be found in Fig. 6 top row, where we render the
source texture and result appearance on a pillow geometry. We can
also also enrich rgbn images [Toler-Franklin et al. 2007], i.e., dif-
fuse map and normals per pixel, as shown in Fig. 6 bottom row. In
each case, the specular component of the reflectance is transferred
successfully to produce a believable look that exhibits no visual ar-
tifacts. This might be useful to quickly enrich diffuse texture maps
found in commonly used texture libraries.

5 Results and analysis

Throughout this paper, we tested our algorithm across a wide va-
riety of materials, including organic objects (Figs. 1, 2), metals
(Figs. 6, 8), greeting cards (Fig. 2), waxes (Fig. 5) and woods
(Figs. 7, 8). These very different datasets can be handled by our
method since we make no assumptions on the distribution of points
in the appearance domain. We believe that these results would oth-
erwise be very challenging to achieve even for experts. To appre-
ciate the quality of results best, we refer the reader to the supple-
mental materials for full resolution rendering results of all example
transfers.

Performance and Scalability. Table 1 lists the datasets we used
throughout the paper. We report the material representation type, its
resolution, the number of affine transformations used in the algo-
rithm and the reduced dimensionality of the dataset. For all materi-
als we tested, the intrinsic dimensionality is between two and three,
and the number of affine transformations are typically in the range
of a few thousand. Table 2 lists the execution time for each retar-
geting example in this paper. Retargeting takes on average around
30 seconds with an unoptimized, single-thread implementation exe-
cuted on an Intel Core 2 running at 2.83 GHz with 4 GB RAM. Due
to sparse sampling, the execution time of our algorithm is nearly in-
dependent of data size, supporting high resolution datasets well. In
terms of memory, our algorithm grows linearly with the size of the
data, only requiring the storage of the reflectance projections.

Sensitivity to stroke locations. Like all stroke-based methods,
the results of our retargeting algorithm depend on the user’s inten-
tions expressed as stroke placements. However, we found that pre-

Figure Template Source Timing
Init (s) Opt (s) Copy (s)

Fig. 1 Green oak Brown oak 8 12 2

Fig. 2 Green oak Green ivy 9 8 2

Fig. 2 Dove Leaf card 11 9 1

Fig. 5 Yellow wax Blue wax 13 26 1

Fig. 5 Blue wax Art stone 11 18 1

Fig. 6 Rusted metal Ring texture 13 20 1

Fig. 6 Rusted metal Scissor 13 29 1

Fig. 7 Maple wood Walnut wood 10 15 2

Fig. 8 Burning wood Drying wood 10 11 2

Fig. 8 Copper Rusted metal 12 13 1

Table 2: Timing for all retargeting results shown in this paper, split
into initialization, iterative optimization and final copy. Note how
some of the retargeting results are cross-type, i.e., source and tem-
plate do not have the same representation.

cise positioning of strokes is not necessary, since our algorithm is
stable against changes in stroke location and sizes. Figure 7 shows
an example of retargeting between polished woods, where two sets
of sparse strokes are tested on the retargeting pair. Although the
locations of strokes are very different between these two sets, the
user’s intentions are the same: transfer the appearance of the grains
and body of the maple to the grains and body of the walnut respec-
tively. We show that the results of retargeting are visually the same.
We believe the main reason for this stability is that due to low di-
mensionality of the appearance space, a very sparse set of stroked
points is sufficient to sample it well, thus capturing user’s intentions
in a numerically-stable manner.

Material Types. One major benefit of our algorithm is that it is
fundamentally independent from the underlying material represen-
tation for BRDFs since reflectance distances can be defined for all
models. We found that our algorithm works well with a large vari-
ety of material representations and with allowing cross-type retar-
geting between different representations, further strengthening the
generality of our approach. In the remainder of this section, we
quickly summarize the representations used.

• Analytic BRDFs. We support a variety of analytic represen-
tations. The dove greeting card in Fig. 2 is represented as
anisotropic Ward [Ward 1992]. The burning and drying wood
from [Gu et al. 2006] in Fig. 8 use a modified Cook-Torrance
BRDF [Cook and Torrance 1982]. Finally, Fig. 7 uses the
finished wood representation from [Marschner et al. 2005].

• Linear Basis Projection. [Holroyd et al. 2010] models re-
flectance at each surface point of a spatially-varying material
as a linear combination of a small set of basis BRDFs. We
employ such a representation for Figs. 1, 2, 6, 8 where we use
five Phong BRDFs of varying specular roughness as basis.

• Microfacet. Microfacet-based representations model the
BRDF by tabulating a normal distribution function for each
point, from which reflectance can be computed [Ashikhmin
et al. 2000]. Figure 8 shows an example of retargeting an
anisotropic copper patina, represented as a microfacet model,
to rusted metal, represented as linear basis projection.

• SubEdit BSSRDFs. Figure 5 shows examples of retargeting
BSSRDFs by employing the SubEdit representation. We refer
the reader to Section 4 for further details.

6 Conclusion and Future work

In this paper, we introduce a general formulation for retargeting
measured materials where the spatially-varying reflectance of a
source dataset is edited by applying the reflectance function of a
template dataset, while still maintaining the spatial patterns shown
in the source. We perform retargeting as an appearance-space warp-



Figure 6: Two results of using a rusted metal strip as template to enrich (top) a diffuse texture applied to a pillow and (bottom) an rgbn
image. Data from [Slavens 2005; Toler-Franklin et al. 2007; Wang et al. 2008].

Figure 7: Retargeting results of wood datasets computed using different stroke positions to show the stability of our approach with respect to
stroke placement. Data from [Marschner et al. 2005].

Figure 8: Top: Retargeting result of wood samples. Note the original textures are shown here on the right corner of each rendering. Bottom:
Retargeting result of metal samples. Data from [Gu et al. 2006; Lawrence 2009].



ing operation that requires minimal user input and runs in tens of
seconds. We show the effectiveness, stability, and generality of our
algorithm by performing retargeting on a number of measured ma-
terial datasets represented using various reflectance models. For
future work, we would like to explore how to extend our frame-
work to beyond the appearance domain, for instance to encompass
spatial domain operations into the retargeting process. We also like
study how to utilize local geometric information, such as normals
and tangents, to further enhance retargeting results.
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