
3DFlow: Continuous Summarization of Mesh Editing Workflows

Jonathan D. Denning∗ Valentina Tibaldo† Fabio Pellacini†
∗Taylor University †Sapienza University of Rome

initial mesh continuous levels of detail other datasets

final mesh hierarchical summarization of timeline
Figure 1: Continuous levels of details automatically constructed from a 30 minute digital sculpting session of a professional artist. The
artist sculpted the cube (top-left) into a monster (bottom-left) in 797 strokes using dynamic remeshing techniques. The center column shows
the sequence summarized in 4, 8, 16, and 32 steps (top) and the corresponding timeline (bottom). The mesh is colored green to indicate
created geometry and golden to indicate the strength of change from the previous mesh. Blue highlighting and vertical black lines indicate
the hierarchical summarization. Four additional sequences are shown at different levels of detail on the right.

Abstract

Mesh editing software is improving, allowing skilled artists to cre-
ate detailed meshes efficiently. For a variety of reasons, artists are
interested in sharing not just their final mesh but also their whole
workflow, though the common media for sharing has limitations. In
this paper, we present 3DFlow, an algorithm that computes contin-
uous summarizations of mesh editing workflows. 3DFlow takes as
input a sequence of meshes and outputs a visualization of the work-
flow summarized at any level of detail. The output is enhanced
by highlighting edited regions and, if provided, overlaying visual
annotations to indicated the artist’s work, e.g. summarizing brush
strokes in sculpting. We tested 3DFlow with a large set of inputs
using a variety of mesh editing techniques, from digital sculpting to
low-poly modeling, and found 3DFlow performed well for all. Fur-
thermore, 3DFlow is independent of the modeling software used
because it requires only mesh snapshots, and uses the additional in-
formation only for optional overlays. We release 3DFlow as open
source for artists to showcase their work and release all our datasets
so other researchers can improve upon our work.

1 Introduction

3D artists commonly showcase their workflows using time-lapse
videos, as screen capturing software is simple to use and requires

very little interruption in the artist’s work. Even for relatively
simple 3D models, though, mesh editing workflows are long,
ranging from tens of minutes to several hours of work, and involve
thousands of operations. Time-lapse videos are not very effective at
these lengths as the artist must make a trade-off between presenting
the details of their workflow and keeping the presentation as short
as possible. Choosing either details or brevity impacts the effec-
tiveness of the video. Motivated by this concern, recent research
has explored ways to visualize and navigate lengthy recordings
of artists at work, for modeling as well as image editing. While
the previous work studied ways to provide levels of interactivity
beyond static images and fixed video, their systems are still limited
both by the input and the output.

In this paper, we present 3DFlow, an algorithm for producing con-
tinuous summarizations of mesh editing workflows. Our approach
does not require using instrumented software, can summarize
digital sculpting workflows, and is agnostic to the 3D software and
editing methods used—the input needs only to be a sequence of
meshes. Figure 1 shows at different levels of detail the summaries
of several workflows, including low-poly modeling and sculpting
sessions using dynamic or uniform remeshing. 3DFlow is inspired
by two prior works. As in Video Tapestries [Barnes et al. 2010], we
support continuous levels of summaries to allow arbitrary temporal
zooming of the editing sequence. As in MeshFlow [Denning et al.
2011], we add visual annotations to highlight important changes
and summarize the artist’s edits.

Given a sequence of meshes, 3DFlow first detects the changes
made between subsequent meshes, called mesh deltas, and gen-
erates a dependency graph for these deltas, called a depgraph, to
capture the spatial and temporal dependencies of the edits. Then
3DFlow summarizes the depgraph by repeatedly contracting the
edge of least weight, computed by a cost function over the strength
and distance of changes in the spatial and temporal dimensions,
and merging the corresponding deltas. When only one delta
remains, 3DFlow splits the merged deltas in reverse contracting
order to produce continuous levels of details.

3DFlow visualizes the workflow at any level of detail in several
forms: as a video, as an image sequence or tapestry, or within
an interactive viewer. Within the interactive viewer, the data can
be filtered to certain regions of interest. In this paper and the
supplemental materials, we demonstrate an extensive variety of
rendering techniques and visual annotations, all of which are
computed automatically or derived from instrumentation output.
For example, 3DFlow can highlight changes on mesh and in the
timeline to emphasize the magnitude of the edit, overlay sculpting
strokes as line segments, use text or images to indicate tool usage,
and view the workflow from an arbitrary point of view or from the
artist’s orientation (if optional edit details are available).

This work contributes to the growing research space on workflow
visualization in a few different ways. We propose an algorithm
that robustly summarizes a sequence of meshes based on simple
surface analysis regardless of the used recording method, software,
length of workflow, artistic style, and editing toolsets. Our method
considers both the spatial and temporal dimensions, possibly
lending to more succinct summaries. 3DFlow produces output at
any level of detail, from the original sequence length down to a
single step. The contributions listed above are not only helpful
to artists by interactively visualizing their workflows, but also
benefit the scientific community. For example, summarization aids
in the understanding of workflow from a high-level, a necessary
component to analyzing workflows for patterns. Furthermore, we
believe that our approach is general and principled, providing a
framework for summarizing workflows in other domains.

We quantitatively and qualitatively validate in two user studies the
idea that 3DFlow can be a tool for sharing summaries to their fullest
extent, aiding the user to better understand how a model is built.

We refer the reader to the supplemental materials for a comparison
video between 3DFlow summaries and the fast-forwarded original
sequence, a full-featured interactive viewer built for common
platforms, a proof-of-concept WebGL interactive viewer, and a
document containing images of all tested workflows and additional
details. We release all workflow data and code for both 3DFlow and
our instrumentation as supplemental material, so that artists can
take advantage of our algorithm in their daily work and so that other
researchers have datasets readily available to test other approaches.

2 Related Work

Workflow Visualization and Reconstruction. Developers and
users widely benefit from understanding common workflows on
complicated UI. An example proposed by Terry et al. [2008] is to
optimize the image editing interface for particular scenarios.

In a similar context, Kong et al. [2012] presented to users a corpus
of workflows at three levels of granularity in order to understand
how the users compared the workflows and which granularity was
most preferred. Software users learn by studying the workflows
of others through tutorials and teaching tools. For example, Gam-
iCAD [Li et al. 2012] is an AutoCAD tutorial system for teaching
first time users commonly used tools and workflow patterns.
Matejka et al. [2009] proposes an algorithm and user interface that
present command recommendations to the user based on history
of command usage. Grossman et al. [2010] and VisTrails [2010]
present systems with which users can explore the provenance
of how images or 3D models were constructed. Nakamura and
Igarashi [2008] present a system for visualizing user operation
history with annotations. Nonlinear Revision Control for Images
[Chen et al. 2011] visualizes the workflow of artists manipulating
images with a focus on the non-linear relationships between opera-
tions induced by their spatial and semantic overlap. More recently,
a few papers have shown complementary methods of visualizing

workflows. MeshGit [Denning and Pellacini 2013] and 3D Time-
line [Doboš et al. 2014] estimate and visualize mesh construction
provenance as a sequence of mesh diffs with correspondence. Chen
et al. [2014] presents a way to assist an artist in choosing viewpoints
to showcase their 3D editing workflow. We leave the exploration
of adapting the last three works into 3DFlow for future work.

Video Summaries. Video Tapestries [Barnes et al. 2010] sum-
marizes a video sequence into a multiscale tapestry with the ability
to continuously zoom into the tapestry to expose fine temporal
detail. This feature allows the summary visualization to adapt
to the changes in the sequence as well as the user’s preference,
rather than forcing the summarized data to fit arbitrarily chosen
intervals which may produce unintuitive results. We adopt a similar
framework for summarizing workflows.

Polygonal Modeling Summaries. Most similar to our work,
MeshFlow [Denning et al. 2011] provides summaries of mesh
construction sequences by hierarchically clustering the steps in
the sequence. Visual annotations are used to indicate the clustered
operations performed by the artist: highlights for changed elements
and overlayed visual annotations to indicate types of change.

While we take inspiration from MeshFlow, our work significantly
differs in the approach to summarization and addresses key
limitations. Specifically where MeshFlow uses a fixed set of
rules based on editing patterns, our work provides continuous
summarization of the workflows based on a cost function over edit
strength and distance. We performed n-gram analyses on the digital
sculpting workflows (see supplemental materials), but the results
did not yield a clear set of summarization rules. We believe that
MeshFlow-type summarization is not possible on digital sculpting
workflows due to the vastly different editing patterns and the fact
that a single sculpting tool can produce widely different effects.
Moreover, because 3DFlow uses a cost function, the input to the
summarization algorithm does not require tightly-instrumented
editing software—periodically saving is sufficient. As a final
point of difference, MeshFlow summarizes the workflow linearly
with respect to time, but 3DFlow summarize over two dimensions
(spatial and temporal) to allow for temporal reordering, producing
more succinct summaries.

Stroke Summaries. When viewing a summary of the sculpting
sequence, the artist’s strokes are helpful for understanding how
the artist worked. But for a heavily summarized sequence, the
presence of all strokes obscures the object shape and remains
too cluttered to provide a high level intuition. Recent work has
presented ways to visualize large numbers of edges in a dense
graph and to cluster artist strokes in order to provide a high-level
overview of the underlying data. Holten and van Wijk [2009]
show how a force-based system can organize edges in a graph
visualization into bundles, which reduces the clutter and exposes
underlying connections that might otherwise be obscured. When
applied to our brush stroke data, we found that the artist’s strokes
are organized into patterns that suggest workflows not present
in the original sequence. More recently, Orbay and Kara [2011]
propose a method of beautifying design sketches by first clustering
them and then fitting curves to the strokes. Their approach requires
training of the clustering method and assumes that each stroke
contributes directly to the final sketch. With our data, however,
we found that the sculpting strokes affect the final result indirectly.
For example, the smooth sculpting tool, used to smooth out abrupt
features in the mesh, is typically used in a highly unstructured way,
where the artist simply paints over a region they wish to smooth.
Instead 3DFlow de-clutters stroke display by providing continuous
filtering of strokes based on the strength of the underlying edit.

3DFlow Summarization Algorithm

CONSTRUCT
mesh deltas (del, add) and
depgraph (temporal, spatial;
below) for input sequence 1: 2: 3: 4: 5:

SUMMARIZE
depgraph by iteratively
contracting least-weight edge
and merging mesh deltas

1

2

3

4

5

7.47

8.51

6.74

10.22

7.60

10.90

6.79

⇒ 1

2·4

3

5

8.34

7.51

7.55

6.60

11.61 ⇒ 1 2·4 3·5
7.14 7.81

⇒ 1·2·4 3·5
7.58

⇒ 1·2·4·3·5

2·4: 3·5: 1·2·4: 1·2·4·3·5:

OUTPUT
levels of detail
by splitting nodes
in reverse contracting order

1·2·4·3·5

1·2·4 3·5

1 2·4 3·5

1 2·4 3 5

1 2 4 3 5

level 4

level 3

level 2

level 1

level 0

VISUALIZE
full summarized sequence
of level 2 and level 0

Figure 2: The input is a sequence of meshes. In this example, each mesh is a single component and was created by performing a series
of extrusions. Mesh deltas are constructed for each snapshot to find which faces are deleted (red) from and which are added (green) to the
previous snapshot. A dependency graph (depgraph) is created to capture temporal (blue) and spatial (orange) dependencies with a node for
each delta and a directed edge for each dependence. Every edge is weighted by the cost of merging the mesh deltas corresponding to the two
nodes of the edge. We iteratively contract the least-weighted edge and merge the mesh deltas corresponding to the two nodes until no edges
remain. The final remaining node corresponds to the mesh delta that is equivalent to adding the final mesh of the input sequence. Finally, we
iteratively split the node(s) in reverse contracting order, creating continuous levels of details of the sequence as output.

3 Sequence Summarization

The input to 3DFlow is a sequence of mesh snapshots along with
any associated software or edit information such as artist viewing
orientation or sculpting stroke data. Note that the associated edit
information is not required for summarization, as it is only used to
overlay optional visual annotations to the sequence visualization.
A sequence can be created in several ways by saving snapshots
of the mesh after every change using instrumented software,
periodically (e.g., every 5 minutes), or after every logical group of
changes as is done with repository commits.

The following subsections describe the summarization algorithm
in detail. Figure 2 presents an intuitive overview of this section
using a simple example input sequence.

3.1 Constructing Mesh Deltas

We first convert the spatially normalized input into a sequence
of mesh differences, which we call mesh deltas. A spatially
normalized sequence has a union bounding box that fits in a
unit cube, where at least one dimension has unit length. Each
delta tracks the spatial changes and the temporal range the delta
covers, which is initially a single snapshot of the sequence. More
specifically we store in each delta three sets: a set of deleted faces,
a set of added faces, and a set of the original snapshot indices that
the delta covers. Note that we can reconstruct every original mesh

by successively applying the sequence of deltas and then scaling
by the inverse of the normalization factor.

We use a simple rule to build a mesh delta between two subsequent
snapshots in a sequence: a face in the former snapshot that also
exists in exactly the same position in the latter is considered
unchanged; all other faces in former snapshot are deleted, and all
other faces in latter are added. Under this rule, a transformed face
is represented as a deletion of the face in the old position and an
addition of the face in the new position. Despite its simplicity,
this creation rule works surprisingly well. Faces do not need to
be matched and tracked but only determined to be left unchanged,
deleted, or added, which is inexpensive to compute and handles all
types of mesh edits, including subdivision.

Two mesh deltas can be merged into a single mesh delta, thereby
creating a summary of the original edits. The merged mesh delta is
constructed using union and set difference operators. The merged
set of added faces is the union of both sets of added faces minus
the deleted faces, and the merged deleted set is the union of deleted
faces minus the added faces. For example in Fig. 2, delta 4 deletes
a face that is created in delta 2, so the merged delta 2·4 does not
include this face.

We summarize the sequence into continuous levels of details
by iteratively merging mesh deltas. The following subsections
describe the process of choosing which mesh deltas to merge.

same temporal order with temporal reordering

Figure 3: Temporally reordering edits of shark sequence. A single spatially independent change on the dorsal fin (highlighted) interrupts
the creation of work on the pectoral fins. Temporal reordering allows 3DFlow to create a more succinct summary with edits to dorsal fin and
pectoral fins clustered in their respective summaries.

3.2 Constructing a depgraph

A key observation is that two temporally subsequent mesh deltas
may not spatially overlap, where the intersection of the set of the
added faces in the former mesh delta and the set of deleted faces
of the latter is empty. This implies that although one mesh delta
may temporally follow another—having been performed by the
artist subsequently—it is not always necessary that the deltas are
merged in the same temporal order. For example, Fig. 3 shows two
summaries of the shark fins construction. The artist first creates the
dorsal fin and then begins working on the pectoral fins, but the pec-
toral fin workflow is interrupted by a single, spatially disconnected
edit on the dorsal fin. The summary on the left maintains the orig-
inal temporal order and therefore contains the single interrupting
edit (highlighted). By temporally reordering the edits so the single,
interruptive dorsal fin edit is summarized with the other dorsal fin
edits, the right summary is much more intuitive and succinct.

While temporal reordering is useful, it is important to maintain
spatial dependence of the mesh deltas. For example, if delta B
deletes a face added by A, then temporally reordering B to be
before A should not be allowed.

We build a dependency graph, depgraph, that captures and enforces
the temporal dependence and spatial dependence of the mesh
deltas. A node exists for each mesh delta, and a directed edge
exists between a pair of nodes if one node depends on the other.
We color the edges by the type of dependence. In order to simplify
the depgraph and make summarization faster, we remove temporal
edges between nodes that are also spatially dependent, and we
remove any edge between two nodes that are also indirectly
spatially dependent. For an example of the latter, the depgraph
below shows that delta C depends both directly and indirectly on A.

A

B

C

We can remove the A → C edge and therefore simplify the
depgraph without changing the spatial dependencies.

It is important to note that although we maintain spatial depen-
dence, temporal dependence is still a critical data point to maintain.
This note becomes obvious with workflows that create spatially
disconnected meshes. Without temporal dependence, the depgraph
would contain disconnected subgraphs, and while disconnected
meshes are spatially independent, edits on one mesh may influence
the changes of nearby meshes. For example, in order to get the
shape and proportions correct when working on the eye socket area
of a face mesh, the artist may insert a sphere representing the eye.
Although this eye mesh is spatially independent from the rest of
the mesh, its addition heavily influences the shaping of the face.

3.3 Summarizing a depgraph

We summarize a depgraph by contracting one of the edges in the
graph and merging the mesh deltas corresponding to the nodes of
the edge. The choice of which edge to contract (or which deltas to
merge) affects the summary. For 3DFlow, we motivate our choice
with two intuitive and straightforward guidelines that apply to the
temporal and spatial dimensions of the sequence:

• a merged delta should not contain too much change, and

• a merged delta should not contain edits that are too far apart.

In other words, merging deltas with strong changes may lose too
many details in the summary, and merging distant deltas may
divide the focus of the summary.

From these guidelines, we derive a cost function C for merging a
pair of deltas A and B as a weighted sum of four terms, reflecting
the two guidelines for each dimension of the data (spatial and
temporal). We use the cost function to determine which edge to
contract in the depgraphin order to create a summary. Note that in
this notation, each delta may be the result of a previous merge of
deltas. The merging cost function is defined as:

C(A,B) = w0St + w1Dt︸ ︷︷ ︸
temporal

+w2Sx + w3Dx︸ ︷︷ ︸
spatial

(1)

where St, Dt are temporal strength and distance costs and Sx, Dx

are spatial strength and distance costs. Formally these individual
costs are defined as:

St =
|∆t(A)|+ |∆t(B)|

avg |∆t|
(2)

Dt = min
a,b∈∆t(A)×∆t(B)

|a− b| − 1

avg |∆t|
(3)

Sx =
| area[∆+

x (A·B)]− area[∆−x (A·B)]|
max(area[∆+

x (A·B)], area[∆−x (A·B)])
(4)

Dx = min
u,v∈∆x(A)×∆x(B)

min-dist(u, v) (5)

where ∆t(A) is the set of original delta indices covered by delta A,
∆+

x (A) is the set of faces added by A, ∆−x (A) the set of faces
deleted by A, ∆x(A) the set of faces either added or deleted by
A, the dot operator (·) indicates a merging of deltas, avg |∆t|
computes the average size of snapshot indices sets for the deltas in
the depgraph, area is a function that returns the total surface area
for a given set of faces, and min-dist is a function that returns the
minimum Euclidean distance between the given faces.

The temporal strength term, St, is the total number of original
snapshots covered by merging deltas A and B. The temporal
distance term, Dt, is defined as the minimum temporal distance
between the A and B. This term is computed as the minimum
absolute difference between all snapshot indices of A and of B
minus one. For example, if delta A covers snapshot 1 and B covers
snapshots 2 and 4, the temporal distance cost of merging A and
B is 0. Both of the temporal terms are regularized by the average
number of snapshots covered by the deltas to prevent the temporal
terms from dominating the cost function.

The spatial strength term, Sx, is the absolute net change in surface
area after merging both A and B, regularized by dividing by
either the net added surface area or the net deleted surface area,
whichever is larger. The denominator regularizes spatial changes
to be relative to the size of region affected. In other words, spatial
changes that are small in the absolute sense are relatively large
if they affect a small region, and large spatial changes that affect
large regions may be relatively small. The spatial distance term,

Figure 4: User interface for 3DFlow. The top-left panel visualizes
the mesh at the selected level of detail with visual annotations to
indicate surface changes and brush strokes. The bottom-left panel
shows the timeline. Visualization options are set in right panel.

Dx, is the minimum Euclidean distance between the added and
deleted faces of A and the added and deleted faces of B. Note that
the spatial distance term is already regularized when the input was
processed to fit in a unit cube.

The four terms of Equation 1 address the two guidelines mentioned
earlier across both dimensions of the data. Each of the terms are
linearly weighted to emphasize different types of clustering. For
example, setting w0 to 1 and the remaining weights to 0 will allow
for hierarchical uniform clustering. We experimentally found the
weights 2, 1, 4, and 14 (respectively) work well to give intuitive
results across all shown datasets. All figures in this paper and the
supplemental materials use these weights.

We consecutively summarize the depgraph, recording the order of
edges we contract, until only one node remains. The delta corre-
sponding to the remaining node covers all of the original deltas
(possibly reordered) and adds all of the faces of the final mesh. As a
note, 3DFlow can optionally hold out summarizing the initial mesh
(e.g., cube, bust, etc.) until the very last step. This holding out may
produce more intuitive summaries, as the base mesh is visible in
its original form for all summary levels except for the highest.

3.4 Outputting Levels of Detail

We create the highest summary level as a single delta, the delta
corresponding to the single remaining node. This single node is
then split into two nodes according to the last edge contraction
performed during summarization. Note that the contracted edge
encodes the dependence of the nodes, and we maintain this
dependence by placing the dependent node temporally after the
other node. The corresponding deltas of these two nodes define the
second highest summary level. Now, we repeatedly split the nodes
in reversed order of edge contraction to produce continuous levels
of detail. Reconstructing the deltas in this manner produces linear,
but also hierarchical, levels of detail.

3.5 Discussion

We chose to define our cost function using surface area of deltas
to measure shape differences since, compared to other metrics (see
[Pottmann et al. 2009; Silva et al. 2009] for a review), it is efficient
to compute, it is well-defined even on non-manifold meshes or
meshes with holes, and it does not require a registration between
two meshes beyond finding which faces have been altered. Despite
the simplicity of the terms introduced above, we found that the
cost function worked well over a range of sculpting and polygonal
modeling datasets. Furthermore, we tested more expensive cost
functions (e.g., mean curvature, volume delta, hausdorff distance,
distance between corresponding points), and found that they did
not improve upon the results enough to warrant the additional
computation. We leave further investigations to future work.

In 3DFlow, we do not consider the category or name of the
edit operation or even editing patterns when clustering. We
did perform n-gram analysis on the digital sculpting workflows
(see supplemental materials), but it is unclear how to construct

previous mesh delta current

− + =

abs distance signed distance matcaps
Figure 5: Emphasizing surface changes in mesh delta. Applying
the mesh delta (top-middle, 31 edits) to the previous mesh (top-left)
results in the current mesh (top-right). The bottom row shows
three different ways to highlight and emphasize the magnitude and
direction of changes to the surface. See Sec. 4 for more details.

clustering patterns similar to those by Denning et al. [2011] that
would produce intuitive results. Furthermore, by only considering
the edited region and not the name or category of edit operation,
3DFlow can summarize more general workflows such as those
in which instrumentation was not used. For an example see the
supplemental material where we used as input to 3DFlow every
version of the character Sintel from the Subversion repository of
the open movie Sintel [Blender Foundation 2011].

Limitations. While we believe that Equation 1 performs well in
regards to our guidelines, it does not capture the semantic of an
edit. For example, it might make sense to cluster together edits that
work on the eyes or those that add wrinkles across the face, but the
formulation above does not infer any semantical meaning from the
edit itself or from the region being changed.

Finally, although the spatial distance computations are highly
parallelizable and many other computations can be cached, the
nature of greedily choosing a single edge to collapse in the dep-
graph imposes sequential constraint on the algorithm. We focused
on computing accurate values or highly accurate approximations
when possible, and we leave further optimization for future work.

4 Visualizations

In this section, we describe some of the ways we visualize different
features of the data. We also discuss a few ways for a viewer to
interact with the data.

Basic User Interface. Figure 4 shows the user interface. To
maintain simplicity, we use a basic layout that is similar to a simple
video player. At the top-left is the main 3D view, where the mesh
is seen at the selected time and level of detail. Regions of the mesh
that are altered by the selected delta are highlighted in blue. The
timeline at the bottom-right acts much like a scrub bar in a video
player. The vertical axis of the timeline is the level of detail, with
highest summary at the top and greatest details (deltas of original
sequence) at the bottom. Black vertical lines indicate where each
delta begins and ends. The blue vertical bar indicates the coverage
of the selected delta, and the blue horizontal bar indicates the
selected level of detail. The visualization options on the right allow
the viewer to control how the mesh is rendered.

While 3DFlow generates continuous levels of detail from every
delta down to a single delta, by default we simplify the user
interface to show only a subset of the levels. We choose the levels
that are at a log-scale of the original deltas (all, half, quarter, etc.),
and then we add the levels with 2–20 deltas and the levels with odd
number of deltas in the 20–50 range. This simplification can be
turned off.

unfiltered, with
edit-strength

filtered

re-summarized

Figure 6: Edit-strength annotations and spatial filtering on gorilla sequence. The mesh on the left is partially deemphasized to indicate the
selected regions. The top timeline shows the original unfiltered workflow with the viewed step highlighted in blue and the edit-strength anno-
tation enabled, the middle shows the workflow with spatial filtering enabled, and the bottom shows the workflow filtered and re-summarized.
Edit-strength annotations shade deltas in green to indicate the magnitude of change in surface area. Spatially-filtered deltas which do not
modify the selected region are darkened and are not viewable.

Highlighting Changes. The changes in a mesh delta are em-
phasized by highlighting the added faces, where the magnitude of
the change modulates the visual strength of the highlight. For each
delta, we approximate a magnitude of change for each vertex of an
added face as the minimum distance between the vertex to the sur-
face defined by the deleted faces. If in a delta no faces were deleted,
then all of the vertices of the added faces are marked as added. This
can happen, for example, whenever the artist creates disconnected
geometry. We visualize added geometry in green and modified
geometry by using it as a mixing value. To adapt highlighting for
edits that are globally large (e.g., creating a large appendage) and
for edits that are globally small but locally large (e.g., adding wrin-
kles), 3DFlow can individually rescale the magnitudes by the local
or global maximum. Rescaling highlights locally helps keep small
refinements visible even when summarized with large changes.

3DFlow offers several highlighting options for the vertices.
Figure 5 demonstrates a few different possible visualizations
which are briefly explained below. One option is to linearly map
the magnitude to a color gradient, where unchanged vertices are
colored a neutral gray, moderately changed vertices are yellow, and
vertices with strong magnitude of change are white. A multi-color
gradient provides better resolution to help resolve strong changes
from minor changes. Another option is choosing different color
gradients based on the sign of change. Specifically, the vertex has
a positive change if it was moved ”outside” the deleted surface and
negative if moved ”inside”, where sidedness is determined by the
surface normal. Positive changes are colored blue, while negative
changes are colored orange. This option of highlighting visualizes
the approximate magnitude and direction the vertex was moved,
giving a sense of the change in volume. Lastly, rather than mapping
the magnitude to a color gradient, the magnitude can influence a
mixing value between two matcaps. Matcaps simulate complex
material and lighting setups and are often used to help sculpting
artists focus on certain characteristics of the surface. For example,
increasing the material’s specularity can emphasize high-frequency
details and creases.

Visualizing Sculpting Annotations. While highlighting indi-
cates how much the mesh has changed, it is not very descriptive
of which sculpting tool the artist used or how the tool was used.
When tool usage metadata is provided, 3DFlow can visualize the
artist’s tool usage by overlaying visual annotations. In 3DFlow, we
visualize the artist’s sculpting strokes as lines drawn over the mesh.
Because the sculpting strokes may fall inside or behind the mesh,
we render the strokes in two passes: once with a thick, transparent
line without performing depth tests, and then another with a thin,
opaque line with depth testing. The first pass allows the viewer
to see strokes that are obscured by the mesh without adding too
much clutter, and the second shows details. Strokes are colored by
brush type: pulling in blue, smoothing in cyan, creasing in orange,
and grabbing or nudging in pink. Although we visualize only the
sculpting strokes, visualizing other types of edits, such as extrude
edge and merge vertices, can be easily added to 3DFlow.

0% 50%

80% 100%

Figure 7: Filtering annotations. The mesh is heavily obscured
when visualizing the sculpting stroke annotations of all 343 merged
deltas (top-left). 3DFlow sorts the annotations by magnitude of
change and continuously filters them from showing all to none.

Filtering Annotations. As the number of covered deltas in-
creases, visualizing all of the tool annotations can obscure the view
of the mesh and may overwhelm the viewer. Similar to providing
levels of detail and summary of mesh deltas, 3DFlow provides con-
tinuous levels of detail and summary for tool annotations through
filtering. Filtering removes the annotations that change the mesh
the least. The filtering can be continuously adjusted to show any
number of annotations from all down to none. Each edit annotation
is assigned a weight equal to Equation 4 of the corresponding delta.
The annotations are sorted by their weight, and 3DFlow visualizes
only the annotations with an order that is above a user-specified
threshold. Figure 7 shows the effect of filtering tool annotations at
varying levels, where 0% filtering shows all tool annotations, 50%
shows only half of the annotations, and 100% shows none.

We considered two clutter-reducing alternatives to sculpting stroke
annotation filtering: determine a representative through spatial
clustering or perform edge-bundling [Holten and Van Wijk 2009].
Unfortunately we found that these alternatives were of little help
for uncorrelated tool usage or suggested tool usage patterns that
were not representative of the artist’s workflow, as in the case of
spatially-close sets of correlated edits.

Spatial Filtering. In order to help the viewer find deltas that
modify particular spatial regions, 3DFlow provides spatial filter-
ing. When the viewer clicks on the mesh, every face in the entire
sequence that is within a given radius of the point on the mesh is
selected. Unselected regions of the mesh are deemphasized in the
main 3D view by desaturation and brightening. All deltas that do
not affect a selected face are darkened in the timeline and made
unviewable, indicating to the viewer when the selected region was
modified. This filtered workflow can then be re-summarized as a
new, customized view of the workflow. Figure 6 shows the timeline
filtered to the deltas that modify the face of the gorilla.

Edit-Strength Annotations. Users may wish to have a summary
of the strength of edits along a workflow. Determining this feature
allows the user to find quickly when the artist made large changes
or small refining changes to the mesh. 3DFlow can optionally
shade the timeline to indicate the edit strength. In Figure 1, the first
three steps summarize large surface changes to block out the form
of the gorilla, while the last four steps summarize the addition of

details and small features. In the second timeline of Figure 6, the
strength of green linearly corresponds to the magnitude of surface
area change.

Other Visualization Options. We refer the reader to the supple-
mental material for a demonstration of other visualization options.
These include: rendering the summarized workflow using external
software; rendering with a mirror effect to see edits on front and
back sides of mesh at the same time; smoothly interpolating or
warping the surface to simulate the artist’s summarized work; and
centering on and zooming into the region of the mesh that is edited.
We leave a more exhaustive investigation of visualization options
for future research.

5 Results

In this section we report about the input workflows and briefly
discuss the results. In the following section we report on results
from two user studies.

Input Workflows. We tested 3DFlow on a variety of mesh editing
workflows, shown throughout the paper and in supplemental mate-
rial. Source code and all datasets are available in supplemental ma-
terial. Table 1 summarizes statistics for all of the input workflows.

Our sculpting data was obtained by two professional artists using
an instrumented version of Blender. One artist has a stronger
tendency to explore while editing, making strong changes often
throughout the sequence, while the other artist prefers to make
strong edits first then refine. Both artists sculpted using both
uniform and dynamic remeshing to control mesh resolution. Work-
flow lengths in terms of the number of sculpting edits varies from
several hundreds to a few thousand. The initial meshes consisted
of a cube, a generic human bust, and a full-body human basemesh.

The helmet, hydrant, robot, shark, and biped polygonal modeling
workflows were imported from the MeshFlow dataset, which is
publicly available online. The durano and creature workflows
are from two Blender Open Movie Workshop DVDs, Venom’s
Lab! [Vazquez 2009] and Creature Factory [Goralczyk 2008], re-
spectively. The sintel [Blender Foundation 2011] workflow is from
the Subversion repository of the open movie Sintel [Roosendaal
2011] available online. All workflows were used directly without
processing or manual filtering.

Discussion. We compare results of summarizing the biped
workflow using 3DFlow, uniform intervals (similar to a timelapse),
and MeshFlow in Figure 8. Due to having continuous summariza-
tion, 3DFlow and uniform intervals can summarize the workflow
anywhere down to a single step, while MeshFlow can only summa-
rize to discrete steps because of using fixed clustering rules. In this
example, we summarized the workflow to ten steps for 3DFlow and
uniform intervals and twenty steps for MeshFlow (the minimum
possible number of steps for this data). The timelines below the
rows of meshes report the coverage of deltas for each workflow
summary. Notice that 3DFlow summarizes changes into small, lo-
calized groups, such as the main figure, head, feet, etc. On the other
hand, uniform intervals and MeshFlow summaries contain merged
edits that are spatially distant (e.g., mixing edits to feet and hands)
or contain many strong edits (e.g.,, the first step of uniform sum-
mary and the tenth step of MeshFlow). Another important note is
that in the original sequence, the hands were created before the feet,
but the arms shortened last. With temporal reordering, 3DFlow
summarized together all of the edits to the forearm and hands.

Figure 10 shows five sculpting workflows that started with a base
mesh and used subdivision remeshing. One artist created the
merman, engineer, and sage workflows, and the other artist created

model fig. deltas faces time

su
bd

iv
is

io
n

sc
ul

pt
in

g

ogre 4 1459 1,660,475 1:26
merman 10 2218 2,171,310 3:40
sage 10 1686 1,961,133 2:19
engineer 10 863 2,919,865 2:54
elder 2958 1,500,632 3:01
alien 1 2118 6,094,173 8:49
man 10 1459 1,953,859 3:03
fighter 10 1532 1,156,686 2:06

dy
na

m
ic

sc
ul

pt
in

g gargoyle 7 819 1,090,882 0:33
monster 1 797 1,389,906 0:47
elf 4125 4,791,845 2:46
gorilla 1 2482 4,241,528 3:32
explorer 1699 3,416,354 2:21

po
ly

go
na

l
m

od
el

in
g

helmet 1 1321 17,579 0:05
hydrant 5 691 49,892 0:04
robot 1810 139,527 0:15
shark 3 1457 19,177 0:06
biped 8 1267 18,162 0:05
durano∗ 1 11 7,165 0:01
creature∗ 123 280,338 0:14
sintel∗ 210 2,948,611 2:11

Table 1: Statistics of input workflows. The workflows are grouped
by editing types: digital sculpting with uniform tessellation (top 8),
digital sculpting with dynamic tessellation (middle 5), and low-poly
modeling (bottom 8). Workflows were either recorded with instru-
mented software or generated from committing versions (starred).
The deltas column reports length of workflow, and faces reports
total count of added faces. The final column indicates how much
processing time (mm:ss) was needed to summarize the workflow.
All meshes are shown and cited in supplemental materials.

the alien (also from a cube with subdivision; see Fig. 1), fighter,
and man workflows.

Assumption Validation. The aim of our work is to find a way
to better explain to a user how a 3D model is built. To validate
the interactive viewer with summarizing workflows, we ran two
user studies and collected spontaneous feedback from various
professional modelers. All the responses we received confirm our
assertion. We report the obtained results in Section 6.

Future Work. We tested 3DFlow with a large set of workflows
across a variety of techniques. There are several other common and
interesting mesh editing workflows that we did not try, including
retopologizing and sculpting using Boolean operations. We plan to
extend the techniques developed with 3DFlow to summarize these
types of workflows as well as workflows that change the properties
of the mesh, such as texturing or rigging, or workflows that modify
full-scene data. When summarizing workflows, 3DFlow does
not consider the type nor the technical complexity of the edit
operations performed. Further 3DFlow does not consider the
context of edits, e.g., adding wrinkles to forehead versus shaping
the eye socket. We plan to investigate these areas in the future.

6 User Study

To validate the effectiveness of 3DFlow, we ran two user studies
that differ in terms of subjects and questions. In the first study, we
quantitatively measure whether 3DFlow can better explain how the
model was built than using existing methods. For this experiment,
we use novice users since we want to measure the impact of
3DFlow on understanding 3D modeling. In a second experiment,
we qualitatively investigate how 3DFlow would impact expert’s
workflow, both as a documentary tool, and as a summarization and
teaching tool for others.

3D
Fl

ow
uniform

10 10

M
es

hF
lo

w

20

Figure 8: Comparing summaries produced by 3DFlow (top-left), uniform intervals (top-right), and MeshFlow (bottom). Changes are
highlighted in black, and the timelines show the coverage of deltas for each summary. The shortest summary MeshFlow can produce of the
biped sequence is 20 steps, while 3DFlow and uniform intervals can have any length. See Sec. 5 for detailed analysis of this figure.

model prob.

global 0.730
alien 0.786
biped 0.629
engineer 0.887
explorer 0.717
gargoyle 0.698
gorilla 0.630
merman 0.736
monster 0.792

prob. with confidence interval

Figure 9: User study results. We report the probability for the
model to be chosen. The first row and the first bar indicate mea-
sures on aggregate values. For each model the computed p-value
is 2.2−16 and µ > 0.6. The bars indicate the confidence intervals.

6.1 Quantitative Comparison

To test user comprehension, we chose to have viewers compare the
summarization algorithm against a standard timelapse. We com-
pare videos rather than using the full interface since we selected
users novice enough that they would likely not benefit from the use
of the full interface. We asked subjects to watch videos that show
side-by-side a timelapse recording of the full editing session and
a clustered version generated by our method. We generated the
timelapse with fixed camera since Chen et al. [2014] shows how
camera movement significantly hinders comprehension. We show
the cluster of operations with highlights only. After the video,
we ask the user for a preference between the two sides with the
question, “Which video explains better how the model was built?”.
We purposely did not over-characterize the question to avoid bias.

We ran the experiment on Amazon Mechanical Turk. For ensuring
experiment qualities, we pay each HIT $0.30 USD, tuning price as
Kaufmann et al. [2011] propose, and we allow just high-rated users
to attend the experiment. We tested on a sample of 160 Amazon
workers. Each task consisted of eight videos, with their order and
left-to-right positions randomized, and each user had only one
opportunity to complete the experiment. We disabled highlights
in the timelapses since they appear as distracting ”flickering”
flashes due to the number of operations per second and the lack
of clustering. For avoiding Good-Subject-Effect bias, we picked
novice subjects. In this way, we assume that most of them have
never seen a sped up timelapse nor our work: without knowing
which is the novelty, they do not know which video is the one we
propose so they cannot be affected by the bias.

We ran a Binomial Exact Test on the results for test significance,
where the null hypothesis is that choosing one side of the video
has the same probability of the other. In Fig. 9 we show the results

of the test with their confidence interval: for all the models, we
reject the null hypothesis with a global p = 2.20e−16. The mean
among the models is µ = 0.786. This implies with high statistical
confidence that users prefer the clustered video for understanding
how the model was built, concluding that 3DFlow can efficiently
convey information about this task.

6.2 Qualitative Expert Feedback

We interviewed five expert artists that are also instructors of digital
sculpting. We showed them our prototype in action, then we
provided a questionnaire. We recorded their assessment of how
3DFlow could impact their day-to-day work. We validated in
the questionnaire that our subjects have confidence with digital
sculpting tools and have previous experience with summarization
tools both for sharing and learning. Our subjects confirmed
that timelapse videos are the most used method for sharing and
watching workflows.

In the questionnaires, the most mentioned problem with timelapses
was selecting the ideal speed, which is not uniform across editing
sessions varying from details to general changes on meshes.
All experts confirmed that they would prefer using 3DFlow,
particularly for the interactivity of the summarization. All of them
requested to be contacted when the work of 3DFlow is published.

All interviewees expressed that 3DFlow would be useful for
sharing their workflow with others using the interactive workflow
along with a traditional video or document tutorial, with all rates
greater than 4 in a scale from 1 to 7 (“very unhelpful” to “helpful”,
resp.), confirming that there is interest in how 3DFlow can benefit
their work.

Here is a sample of experts’ comments when asked to give a
personal opinion about 3DFlow (we include all questionnaires
and responses in supplemental). “This program has amazing
application potential when it comes to 3D education. I would
consider this for use in my classroom.” “This has a huge amount
of potential for teachers and students alike.” “I’d be very interested
in trying this out as an instructor.” “As a tutorial creator I’ve often
thought that something like this would be helpful in addition to the
regular tutorial media options.” “This looks awesome!”

Informal Feedback. We asked for feedback from the two
professional artists who authored the sculpting workflows. They
found the summarizations captured the workflows quite well, and
both agreed that 3DFlow’s interactive viewer with summarized
workflow is a significant improvement. One artist commented,
“I’ve recently finished working on the materials for a sculpting
course I’m teaching. Having 3DFlow available would have allowed
students to better visualize changes to the mesh.” The other artist

commented that it is astonishing to see how 3DFlow breaks down
the workflow process. We also presented our work to the CEO of
the leading online platform for publishing and sharing 3D content.
His response was, “We are always looking to share and showcase
tutorials on the working process and workflows of our best users,
and how they manage to get to beautiful results [. . .] So far, we
have three ways to illustrate it: photos, 3D models with [our site],
and videos. A way to let them record and share the modeling
process in 3D in real-time would be a killer feature.”

7 Conclusion

We presented 3DFlow, an algorithm for providing continuous
summarizations of mesh editing workflows. 3DFlow summarizes
the input sequence of meshes by constructing a corresponding
dependency graph where nodes represent changes to the mesh and
edges the spatial and temporal dependence of the edits, iteratively
contracting the least-weighted edge according to a cost function
until only one node remains, and then splitting the nodes in reverse
order into levels of detail. The visualization of the workflow is
enhanced by highlighting the changed regions and (optionally)
overlaying visual annotations describing the artist’s edits. We
tested 3DFlow with a large set of mesh editing workflows from a
variety of sources and found 3DFlow performed well with all. We
validate the idea that 3DFlow can be a tool for sharing and fruition
of summaries, making users better understand how a model is built.
All source code and data is released as open source.

8 Acknowledgments

We would like to thank the authors of the workflows used, the
participants of the user studies and expert interviews, the editors
at the Taylor University Writing Center, and the reviewers for their
constructive and helpful feedback. This work has been partially
supported by the NSF (CCF-0746117), the Sloan Foundation,
the European Commission 7th Framework Programme (project
TROPIC), and the Intel Corporation.

References

BARNES, C., GOLDMAN, D. B., SHECHTMAN, E., AND FINKEL-
STEIN, A. 2010. Video tapestries with continuous temporal
zoom. ACM Trans. Graph. 29 (July), 89:1–89:9.

BLENDER FOUNDATION, 2011. Sintel. www.sintel.org.

CHEN, H.-T., WEI, L.-Y., AND CHANG, C.-F. 2011. Nonlinear
revision control for images. ACM Transaction on Graphics 30,
4, 105:1–105:10.

CHEN, H.-T., GROSSMAN, T., WEI, L.-Y., SCHMIDT, R., HART-
MANN, B., FITZMAURICE, G., AND AGRAWALA, M. 2014.
History assisted view authoring for 3D models. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Sys-
tems, ACM, New York, NY, USA, CHI ’14.

DENNING, J. D., AND PELLACINI, F. 2013. MeshGit: Diffing and
merging meshes for polygonal modeling. ACM Transaction on
Graphics 32, 4.

DENNING, J. D., KERR, W. B., AND PELLACINI, F. 2011. Mesh-
Flow: interactive visualization of mesh construction sequences.
ACM Transaction on Graphics 30, 4, 66:1–66:8.

DOBOŠ, J., MITRA, N. J., AND STEED, A. 2014. 3D Timeline:
Reverse engineering of a part-based provenance from consecu-
tive 3d models. Eurographics Symposium on Rendering 33, 2.

GORALCZYK, A., 2008. Creature. Creature Factory Blender Open
Movie Workshop, vol. 2.

GROSSMAN, T., MATEJKA, J., AND FITZMAURICE, G. 2010.
Chronicle: capture, exploration, and playback of document
workflow histories. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology, ACM,
New York, NY, USA, UIST ’10, 143–152.

HOLTEN, D., AND VAN WIJK, J. J. 2009. Force-directed edge
bundling for graph visualization. Computer Graphics Forum 28,
3, 983–990.

KAUFMANN, N., SCHULZE, T., AND VEIT, D. 2011. More than
fun and money. worker motivation in crowdsourcing–a study on
mechanical turk.

KONG, N., GROSSMAN, T., HARTMANN, B., AGRAWALA, M.,
AND FITZMAURICE, G. 2012. Delta: a tool for representing
and comparing workflows. In Proceedings of the 2012 ACM
annual conference on Human Factors in Computing Systems,
ACM, New York, NY, USA, CHI ’12, 1027–1036.

LI, W., GROSSMAN, T., AND FITZMAURICE, G. 2012. Gami-
CAD: a gamified tutorial system for first time autocad users. In
Proceedings of the 25th annual ACM symposium on User inter-
face software and technology, ACM, New York, NY, USA, UIST
’12, 103–112.

MATEJKA, J., LI, W., GROSSMAN, T., AND FITZMAURICE, G.
2009. CommunityCommands: command recommendations for
software applications. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology, ACM,
New York, NY, USA, UIST ’09, 193–202.

NAKAMURA, T., AND IGARASHI, T. 2008. An application-
independent system for visualizing user operation history. In
Proceedings of the 21st annual ACM symposium on User inter-
face software and technology, ACM, New York, NY, USA, UIST
’08, 23–32.

ORBAY, G., AND KARA, L. B. 2011. Beautification of de-
sign sketches using trainable stroke clustering and curve fitting.
IEEE Transactions on Visualization and Computer Graphics 17,
5 (May), 694–708.

POTTMANN, H., WALLNER, J., HUANG, Q.-X., AND YANG, Y.-
L. 2009. Integral invariants for robust geometry processing.
Comput. Aided Geom. Des. 26, 1 (Jan.), 37–60.

ROOSENDAAL, T., 2011. Durian open movie project : Sintel full
studio SVN online. www.sintel.org/news/sintel-full-studio-svn-
online.

SILVA, S., MADEIRA, J., AND SANTOS, B. S. 2009. PolyMeCo—
an integrated environment for polygonal mesh analysis and com-
parison. Computers & Graphics 33, 2, 181 – 191.

TERRY, M., KAY, M., VAN VUGT, B., SLACK, B., AND PARK, T.
2008. Ingimp: introducing instrumentation to an end-user open
source application. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM, New York, NY,
USA, CHI ’08, 607–616.

VAZQUEZ, P., 2009. Durano model. Venom’s Lab Blender Open
Movie Workshop, vol. 4.

VISTRAILS, 2010. VisTrails provenance explorer for Maya.
www.vistrails.com/maya.html.

m
er

m
an

fig
ht

er
en

gi
ne

er
m

an
sa

ge

Figure 10: Five sculpting workflows summarized in 8 and 16 steps. These workflows started with a base mesh (left column) and used
subdivision remeshing. The initial and final meshes (right column) are shown without highlighting. The fighter and engineer workflows are
visualized with a mirror effect to show both sides of the mesh.

